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Abstract—Scheduling tests to run in parallel across different
machines is an effective way to reduce overall test running time.
Prior work has focused on scheduling tests across homogeneous
machines, namely, machines all of the same configuration. How-
ever, using all the same configuration may not be the most cost-
effective way to reduce test running time.

We propose scheduling tests across machines with different
configurations, namely heterogeneous machines. Doing so allows
us to balance various factors, e.g., price, as tests may have
similar running times on different machine configurations but
result in drastically different monetary prices. Furthermore,
there can be flaky tests that fail more often on different
machine configurations, so scheduling them across heterogeneous
machines gives better control over their flaky-failure rates. Our
approach, GASearch, leverages genetic algorithms and a fitness
function to balance running time and price to efficiently generate
a heterogeneous machine configuration on which to run tests. We
also model flaky-failure rate of tests on different machines within
the fitness function as a factor of running time, where a failing
flaky test would be rerun until it passes (or to a maximum number
of runs) to confirm if it is a flaky failure, so we can balance all
factors at once. We evaluate our approach on test suites from
24 modules in open-source Maven projects. Compared against
baselines that schedule across homogeneous machines, we find
that scheduling across heterogeneous ones can achieve a lower
running time and price.

Index Terms—Test scheduling, heterogeneous machines,
resource-dependent flakiness.

I. INTRODUCTION

Testing is an important part of the software development
process, but it can be very costly due to the large number
of tests to run [1]–[5]. Test parallelization is an effective
way to speed up testing, by scheduling the tests to run in
parallel and distributed across different machines [6]–[12].
When a developer determines a set number of machines on
which they can schedule tests, they typically consider the
same configuration for each machine, i.e., machines with the
same number of CPUs, RAM, and disk memory [13]. We
consider scheduling tests across machines all with the same
configuration as scheduling across homogeneous machines.
Homogeneous machines may be easier to manage, given that
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all the machines are of the same configuration, but restricting
to use only one configuration can limit test parallelization.

When scheduling tests, a developer needs to consider several
factors: how many machines and which configurations to use.
On one extreme, a developer may choose to optimize for
running time, choosing the machines that allow the tests to
run the fastest. However, these machines tend to be more
expensive, so a developer will pay a high price. On the other
hand, a developer may choose to optimize for price, opting
for the cheapest machines on which to run tests, even though
the tests can run longer. In addition, a developer also needs
to consider the flakiness of tests. A flaky test is a test that can
pass or fail when run on the same version of code [14, 15].
Developers rerun failing tests to check for flakiness, e.g.,
Google developers automatically rerun failing tests to see
whether they are flakily failing [16], which adds to the running
time. Prior work studied resource-affected flaky tests, whose
flaky flaky-failure rates change depending on the resources,
such as RAM, available on the machine on which tests are
run [17]. Resource-affected tests add an extra factor when
considering the machine configurations to use.

In this work, we propose to schedule tests across hetero-
geneous machines. Unlike homogeneous machines, we allow
machines to have different configurations from each other.
Heterogeneous machines allow for more flexibility in how tests
can be scheduled so the scheduling algorithm can schedule
tests to result in more optimal test running time, machine price,
or flaky-failure rate.

We propose GASearch to schedule tests across heteroge-
neous machines. GASearch uses a genetic algorithm, with
a fitness function that combines both test running time and
machine price, with a weighting mechanism to control which
factor has a bigger effect. Furthermore, we encode the flaky-
failure rate of tests on different machine configurations into
our fitness function by modeling their effect on test running
time: the higher the flaky-failure rate of a test when run on
a specific configuration, the more likely it is rerun when it
fails, therefore increasing overall running time. Our fitness
function models flaky-failure rate effect on running time using



the flaky-failure rate of each test and the cost of reruns (up
to 10) to get a passing result if such tests were to fail.
GASearch first uses a genetic algorithm approach to determine
the heterogeneous machines on which to schedule the tests,
and then uses a greedy algorithm to produce an allocation
scheme of tests across those machines, where the greedy
choice is to schedule a test on a machine that minimizes
the fitness function. Developers interested in scheduling their
tests across heterogeneous machines will need to provide
an arbitrary number of test runs on configurations that are
available to them along with the weights on how much the
developers care about the running time and price. Once the
optimal heterogeneous machines to use is obtained, developers
can run tests using those machine configurations for future
code changes, optimizing for their important factors.

We conduct an empirical study on the effectiveness of
scheduling tests across heterogeneous machines. We evalu-
ate GASearch on 24 modules from 22 open-source Maven
projects, taken from a public dataset of test outcomes and their
running times on different machine configurations [17,18]. We
compare GASearch against two baselines that schedule tests
on homogeneous machines: (1) the GitHub baseline that uses
the same configuration used by the GitHub Actions continuous
integration service [19], representing a common usage scenario
where developers use the machines provided by GitHub and
(2) the smart baseline that finds the optimal homogeneous
machines [20]. We also compare against the random baseline
that randomly chooses machine configurations before greedily
allocating tests, allowing for a simple way of getting het-
erogeneous machines. We find that GASearch can achieve
a lower running time and price over that of the baselines.
When optimizing purely for price, it achieves a price that is
on average 45% of the GitHub baseline and 81% of the smart
baseline. When optimizing purely for running time, it achieves
a running time that is on average 91% of the GitHub baseline
and 99% of the smart baseline. GASearch also outperforms
the random baseline on all fronts, but interestingly, the random
baseline does outperform the other baselines when optimizing
for price, on average. Note that GASearch can improve one
metric at the expense of the other, i.e., improved running time
comes at the cost of increased price. When we adjust the
fitness function to better balance between the two metrics,
we find that GASearch schedule tests such that the tradeoff is
more favorable, e.g., having a slightly higher running time but
a much larger reduction in price.

This paper makes the following main contributions:
• We propose scheduling tests across heterogeneous ma-

chines to provide more optimal test running time and
machine price over homogeneous machines.

• We implement GASearch, a genetic algorithm approach
to schedule tests across heterogeneous machines, balanc-
ing running time, price, and flaky-failure rate.

• We evaluate GASearch against baselines that schedule
tests across homogeneous machines and a random base-
line for heterogeneous machines. We find that GASearch
can improve further upon running time and price over

the baselines, and the tradeoff between the two factors is
much better when balancing both within the fitness func-
tion, with both running time and price reduced against the
baselines. Our artifact with experiment scripts and data
is publicly available [21].

II. EXAMPLE

Consider tests from the javadelight/delight-
-nashorn-sandbox project in our dataset: TestInacc-
essible.test_file, TestIssue34.testIssue34-
_Scenario2, and TestMemoryLimit.test; for conve-
nience, we refer to them as t1, t2, and t3, respectively.
Assume the following: (1) we want to schedule these tests
to run across two machines, which can be of C1 and C2
configurations, each comprised of a different numbers of CPUs
and amount of RAM (Section IV has more details on these
configurations), (2) t1, t2 and t3 take 5.22s, 7.53s, and
5.00s, respectively, to run on C1, while the tests take 4.24s,
6.17s, and 4.58s, respectively, to run on C2, (3) t3 is a flaky
test that can flakily fail on both C1 and C2, though with a
different, non-zero flaky-failure rate on each. Developers tend
to rerun tests that fail to check that they are flaky [3]. Test
reruns are stopped once the test passes and it is clear that
there is a flaky failure (and not a real fault).

Based on these assumptions, we can compute an expected
running time for a test based on the expected number of
times it should be rerun. To be more specific, suppose our
strategy is to rerun a failed test as long as it keeps failing,
up to 10 times. If the flaky-failure rate of t3 on C1 is
0.56, then the expected number of times it will be rerun is(
1 +

∑10
i=1 0.56

i
)
= 2.2681. As it takes 5.00s to run on C1,

we can expect the running time for t3 to be 11.34s on C1.
The flaky-failure rate of t3 on C2 is 0.64, which leads to the
expected number of times to rerun the test to be 2.722. As t3
takes 4.58s to run on C2, the expected running time for t3
on C2 then becomes 12.47s.

If we restrict ourselves to using homogeneous machines
where all machines are of the same configuration, the best
option would be to use two C2 machines, where we schedule
tests t1 and t2 to one machine and t3 to the other. The
overall running time of tests scheduled across these machines
is the longest running time of the tests on a single machine
(as tests are run in parallel across different machines). The
overall running time is 12.47s, as t1 and t2 take a combined
4.24 + 6.17 = 10.41s to run on a C2 machine and t3 takes
12.47s to run on its own on the other machine.

However, we see that there can be a more optimal way to
schedule tests to achieve a faster overall test running time if
we use heterogeneous machines, where we can use different
configurations for different machines. If we allow one machine
to use configuration C1, while the other one uses C2, we can
schedule test t3 on the C1 machine and put the remaining
tests on the other machine. Scheduling tests this way results
in an overall running time of 11.34s, which is the running time

1See Section III for detailed calculation.



of t3 on C1 (the other two tests continue to take a total of
4.24 + 6.17 = 10.41s to run on the other machine).

III. SCHEDULING TESTS ACROSS HETEROGENEOUS
MACHINES

We propose scheduling tests across heterogeneous ma-
chines, i.e., machines that can have different configurations
from each other. The number of possible combinations of
machines increases exponentially from homogeneous (all ma-
chines are of the same configuration), making the search for
an optimal combination of machines much more expensive.
We implement a genetic algorithm [22] to search for the
heterogeneous machines on which to schedule tests, while
optimizing for relevant metrics, such as running time, price,
and flaky-failure rate. We refer to this approach as GASearch.

The input to GASearch is the set of tests, the number of
machines available, a set of C machine configurations to select
from, the time to run each test on each of the C configurations,
and the flaky-failure rate of each test when run on each of
the C configurations (computed by the number of times the
test fails out of the number of times the test was rerun on a
machine with the configuration). The output is an allocation
scheme, which consists of a set of mappings of which tests
to run on which machines, where each machine has a defined
configuration and the number of unique machines matches the
number specified in the input.

A. Genetic Algorithms

Genetic algorithms are metaheuristic search methods that
draw inspiration from natural evolution and genetics to op-
timize solutions for complex problems [22]. In genetic al-
gorithms, a population of candidate solutions is iteratively
evolved towards better regions of the search space through se-
lection, crossover, and mutation. To guide this search, genetic
algorithms rely on a fitness function that measures the quality
of each individual in the population, producing a fitness value.
The overall goal is to create new individuals that improve upon
the fitness value.

For our problem, we treat a combination of machines as an
individual in the population, composed of different machine
configurations. Further, we restrict the search to consider
combinations of machines of length L, where we choose L
from {1, 2, 4, 6, 8, 10, 12}. We essentially search for the
optimal combination of machines of each length L and then
report the most optimal one among them.

B. Initial Setup

We construct an initial population of N combinations of
machines. This initial population contains C combinations of
machines, each of length L, where each of these combinations
of machines contains L identical configurations, corresponding
to each of the possible C available configurations. Essentially,
we start with all possible homogeneous combinations of
machines of length L. We want to include these combinations
of machines initially, because we want to eventually construct
a heterogeneous combination of machines that improves upon

the possible homogeneous combinations of machines. If we
cannot find a heterogeneous combination of machines that im-
proves upon the homogeneous combinations of machines, the
best homogeneous combination of machines will be outputted
as the most optimal solution. Aside from all the homogeneous
combinations of machines, we fill in the remaining initial
population with randomly generated combinations of machines
of length L taken from the C configurations.

C. Fitness Function

We define a fitness function that evaluates the effectiveness
of a given allocation scheme for a combination of machines.
Our fitness function models both the overall running time of
tests scheduled across the combination of machines and the
monetary price involved with running these machines:

Fitness(A) = αβTimepara(A) + (1− α)Price(A) (1)

where Timepara and Price are functions that model the
overall test running time and monetary price, respectively, for
a given allocation scheme A representing the mapping from
tests to machines of specific configurations. We also define a
parameter α to control the weight that running time and price
has towards the overall fitness value. Specifically, when α is
0, we optimize for minimum price only, while when α is 1,
we optimize for minimum running time only. As our goal is to
minimize running time and price, the lower the fitness value,
the better. β is a scaling factor defined in Equation (7).
Running time and flaky-failure rate. We first define how
to compute the running time of tests on a single machine.
Let testtime(t,m) be a function that returns the running
time for test t on a specific machine m. Normally, all tests
should be run once on the machine. However, if the test fails,
developers rerun the test to check whether the failure is a
flaky failure [16], rerunning up to some maximum r number
of times. If the test passes, then the developer is sure that
the failure is a flaky failure and stops rerunning the test. If
the flaky-failure rate of the test is high, then the likelihood of
needing to rerun goes up, resulting in a higher running time.

To model the effect of flaky-failure rate on running time,
we compute an expected running time per test based on the
scenario that the developer reruns the test if it fails:

exptime(t,m) = (1 +

r−1∑
i=1

fr(t,m)i) ∗ testtime(t,m) (2)

where fr(t,m) is the flaky-failure rate of test t on machine
m. We also set r to be 10 in this study. The summation
term

∑r−1
i=1 fr(t,m)i encapsulates the cumulative probability

of flaky failures occurring across test reruns. Each fr(t,m)i

represents the probability of the test failing i times consecu-
tively. We multiply by the test’s running time on the machine
to compute the expected running time.

The overall running time of all tests on a machine m is
therefore the sum of exptime(t,m) for all tests t on m:



MachTime(A,m) =
∑

t∈tests(A,m)

exptime(t,m) (3)

where tests(A,m) returns the tests scheduled to machine m
in the allocation scheme A.
Overall running time. We define the function Timepara to
take as input the allocation scheme A and compute the time
to run all the tests scheduled across the machines represented
in A in parallel (tests scheduled on different machines can be
run in parallel):

Timepara(A) = max
m∈machines(A)

MachTime(A,m) (4)

where machines(A) represents the machines on which A
operates. Essentially, this running time is the longest time
needed to run the tests scheduled to a single machine by A.

Another consideration is whether there should be a setup
time applied per machine. This setup time corresponds to
needing each machine to separately rebuild the project code,
which can vary between different machine configurations.
Currently, our running time metrics assume a use scenario
where the developers do not explicitly build code on each
machine (especially redundant given that each machine has the
same code on which tests will run), but rather the code is built
“offline” and quickly uploaded to each machine, minimizing
setup time. If we consider setup time as part of the running
time, we can compute the running time per machine as:

MachTimest(A,m) = ST (m) +
∑

t∈tests(A,m)

exptime(t,m)

(5)
where ST (m) represents that setup time on machine m. We
evaluate both with and without setup time in our evaluation.
Price. The price of running tests for a given allocation scheme
involves the time needed to run the tests on the machines.

Price(A) =
∑

(t,m)∈A

price(t,m) (6)

where price(t,m) is the price of running test t on m.
Scaling factor. We observe that the running time value is
consistently much larger than price in absolute terms. As such,
weighting the two together in a single fitness function will be
biased towards running time. We introduce a scaling factor β
to better balance the two. For our evaluation, we compute β as
the average price-to-time ratio of all tests on all configurations
in our dataset, namely:

β =

∑
(t,m)∈Dataset price(t,m)∑

(t,m)∈Dataset exptime(t,m)
(7)

Algorithm 1: Greedy Tests Allocation
Input : α, β, tests, machine list,

tests attribute mapping
Output: allocation

1 allocation ← ∅
2 foreach t in sorted(tests) do
3 min fitness ← inf
4 min machine ← None
5 foreach m in machine list do
6 temp allocation ← allocation.add(t, m)
7 fitness ← fitness(α, β, temp allocation,

tests attribute mapping)
8 if fitness < min fitness then
9 min fitness ← fitness

10 min machine ← m
11 end
12 end
13 allocation ← allocation.add(t, min machine)
14 end
15 return allocation

D. Allocating Tests

The fitness value is defined w.r.t. some allocation scheme,
namely which tests are scheduled on which machines. This
allocation scheme problem is similar to the Multiprocessor
Scheduling Problem, known to be NP-hard [23,24]. We utilize
a LPT (Longest Process Time)-based greedy algorithm [25] to
perform the allocation scheme.

Algorithm 1 shows our greedy algorithm. Given a set of
tests and the machines on which to schedule those tests, we
sort the tests in descending order by their running time on their
fastest machine (Line 2). We iterate through the tests in this
order and compute the fitness value after trying to schedule the
test on each machine (Lines 3-4). We schedule the test on the
machine that results in the lowest fitness value (Lines 5-13)
before moving to the next test. We output the final allocation
scheme after processing all tests.

E. Search Operators

In each iteration of the genetic algorithm, we compute the
fitness value for each individual, i.e., combination of machines
(and its corresponding allocation scheme), in the population.
We first apply a selection operator that selects the top 35% of
the individuals based on their fitness values. We then apply
a crossover operator on the selected individuals by randomly
pairing up the individuals and crossing the machines contained
in each one. For each pair, we set a random crossover point to
swap machines between the parents, creating two new children
individuals from those machines taken from the parents. We
continue applying this crossover operator on random pairs of
selected individuals until achieving a new population of size
N . We set N = 100 in our experiments. Next, we apply
a mutation operator on each new individual. The mutation
operator iterates through each machine within and mutates the



machine to a different machine with probability 1/L (the length
of the combination of machines).

After applying selection, crossover, and mutation operators
to generate a new pool of N individuals, we have completed
one iteration of the genetic algorithm. We repeat for I iter-
ations. After the final iteration, we take the individual and
corresponding allocation scheme that provides the best fitness
value and report them as the final output.

F. Implementation

To implement GASearch, we use the DEAP framework [26],
which provides support for quickly implementing genetic
algorithms. We use the built-in data structures and APIs from
DEAP to encode our problem. We configure the search to run
for 50 generations, i.e., setting I = 50.

IV. EVALUATION SETUP

We answer the following research questions:
• RQ1: How does scheduling tests on heterogeneous ma-

chines compare against homogeneous machines?
• RQ2: How does changing the weight factor affect the

tradeoffs between running time and price?
• RQ3: What are the flaky-failure rates from using

GASearch’s allocation schemes?
• RQ4: How does GASearch’s allocation scheme compare

against a brute-force search that finds the optimal alloca-
tion scheme?

• RQ5: How well would GASearch perform if using just
a subset of test data?

We address RQ1 to see whether using heterogeneous ma-
chines can achieve better test running time and machine price
than using homogeneous machines. We address RQ2 to show
the effects of the weight factor in obtaining better tradeoffs
between running time and price. We address RQ3 to show
the expected chance of a build failure with a GASearch
allocation scheme. While we can encode the flaky-failure rate
of tests as rerunning failing tests, we still want to show the
probability of the test suite flakily failing. We address RQ4
to see whether GASearch is more effective than a brute-
force approach at finding the most optimal allocation scheme.
Finally, we address RQ5 to see whether GASearch performs
just as well if it is guided by just a subset of test information,
i.e., running time and flaky-failure rate, collected from a fewer
number of runs across different configurations. This RQ helps
check the practicality of GASearch in the scenario where a
developer does not have much data for guiding GASearch.

A. Dataset

We use a publicly available dataset taken from prior work by
Silva et al. on evaluating test flakiness when run on different
machine configurations [17,18]2. Their data includes the run-
ning times of each test on 12 different machine configurations.
A machine configuration is defined by the number of CPUs
and the amount of RAM available to the machine. Table I

2Obtained June 2023.

TABLE I
MACHINE CONFIGURATIONS FROM [17]. “# CPU” WITH NON-INTEGER

VALUE MEANS A CORE IS SHARED ACROSS MULTIPLE TASKS [27].
HOURLY COSTS ARE SPECIFIED ON AWS FARGATE [28]

ConfigID # CPU Mem (GB) Price (USD/Hour)

C1 0.1 1 0.002548
C2 0.1 2 0.003881
C3 0.25 2 0.005703
C4 0.5 2 0.008739
C5 0.5 4 0.011406
C6 1 4 0.017478
C7 1 8 0.022812
C8 2 4 0.029622
C9 2 8 0.034956
C10 2 16 0.045624
C11 4 8 0.059244
C12 4 16 0.069912

shows a description of each of these configurations. The
dataset also provides the flaky-failure rate of each test on each
machine configuration, i.e., the number of times each test fails
when rerun up to 300 times on each machine configuration.

Starting with the 32 modules3 from 27 projects in Silva et
al.’s dataset, we filter out modules with insufficient data.
Silva et al. collected their data by running the tests in each
module for 30 “rounds”, where in each round they run the
tests 10 times on each of the 12 configurations. We observe
that for some modules, the dataset has “incomplete” rounds,
i.e., rounds without data for all tests or all tests are not run
10 times. We filter out projects with fewer than 10 complete
rounds for all tests; we observe the remaining modules have at
least 27 complete rounds of data. We notice that the dataset has
some tests duplicated across different modules, so we filter out
modules that contain a subset of the tests from other (parent)
modules. Finally, we obtain 24 modules across 22 projects.

Table II shows a breakdown of the modules. Column “ID”
is a module ID we use to refer to the module in future tables
and figures, “Project” is the name of the project in the form
of a GitHub username/repository identifier, “Module” is the
name of the module as marked in the dataset. “# Test” is the
number of tests in the module, and “Avg. Running Time (s)”
is the average test suite running time across all configurations.
“Flaky-Failure Rate Range (%)” is the range of flaky-failure
rate. Note that each test may have different flaky-failure rates
on different configurations. We say a test is flaky if it has
a non-zero flaky-failure rate on at least one configuration.
The minimum value of the range refers to the lowest flaky-
failure rate of all the flaky tests of this module on all the
configurations. The maximum value is similarly the highest
flaky-failure rate for a flaky test across all configurations.

B. Baselines

We compare GASearch against three baselines. The first
baseline is what we call the GitHub baseline, where we use
only the machine configuration that matches the standard avail-
able machines for the GitHub Actions continuous integration
service [19], namely a configuration that uses 2 CPUs and

3A Maven project may contain multiple modules, each with its own tests.



TABLE II
STATISTICS OF THE PROJECTS AND MODULES IN OUR EVALUATION

ID Project Module # Test Flaky-Failure Rate Range (%) Avg. Running Time (s)

M1 activiti/activiti . 2047 0.0 - 91.1 0.44
M2 alibaba/fastjson . 4459 0.0 - 09.0 0.02
M3 apache/commons-exec . 55 0.0 - 03.0 0.54
M4 apache/httpcore . 713 0.0 - 12.8 0.04
M5 apache/incubator-dubbo dubbo-remoting-netty 14 0.0 - 10.7 3.44
M6 apache/incubator-dubbo dubbo-rpc-dubbo 66 0.0 - 05.9 2.24
M7 davidmoten/rxjava2-extras . 390 0.0 - 01.0 0.22
M8 elasticjob/elastic-job-lite . 560 0.0 - 00.0 0.09
M9 flaxsearch/luwak luwak 202 0.0 - 04.0 0.16
M10 fluent/fluent-logger-java . 18 0.0 - 41.0 2.61
M11 javadelight/delight-nashorn-sandbox . 79 0.0 - 63.7 1.53
M12 jknack/handlebars.java . 412 0.3 - 03.4 0.03
M13 joel-costigliola/assertj-core . 6267 0.0 - 80.3 0.00
M14 kagkarlsson/db-scheduler . 25 0.0 - 29.0 0.60
M15 kevinsawicki/http-request . 163 0.0 - 01.0 0.02
M16 nationalsecurityagency/timely server 144 0.3 - 03.7 0.31
M17 ninjaframework/ninja . 305 1.3 - 90.0 0.17
M18 orbit/orbit . 83 0.0 - 34.7 0.52
M19 qos-ch/logback . 863 0.0 - 84.5 0.24
M20 spring-projects/spring-boot . 1689 0.0 - 00.7 0.21
M21 square/retrofit retrofit 297 0.0 - 00.3 0.04
M22 square/retrofit retrofit-adapters.rxjava 80 0.0 - 00.0 0.07
M23 wro4j/wro4j wro4j-extensions 308 0.0 - 00.7 0.81
M24 zxing/zxing . 345 2.1 - 05.5 0.61

Average 816 0.2 - 24.0 0.62

8GB of RAM (effectively C9 from Table I). We choose this
baseline to match the scenario where developers of open-
source GitHub projects use only those available machines. We
use the same number of machines that GASearch proposes
for the same module, to ensure fair comparison, because the
GitHub baseline does not search for the number of machines.

The second baseline is what we call the smart baseline,
where we search for the homogeneous machines based on the
same fitness function that GASearch uses. Due to using the
same configuration for all machines, we can find the optimal
homogeneous machines by trying all possibilities and choosing
the one that produces the best fitness value.

The third baseline is what we call the random baseline,
where we randomly choose the heterogeneous machines. We
use this baseline as a simple and straightforward way to
schedule tests across heterogeneous machines as comparison,
to show whether a more sophisticated solution like GASearch
is needed and whether just using heterogeneous machines can
be better than using homogeneous machines. After randomly
choosing the machines, we use the same greedy algorithm as
GASearch to map tests to the specific machines.

For RQ4, we define a brute-force search that finds the
optimal solution based on the fitness function. The brute-force
search explores all possible combinations of machines. With
L machines and C configurations, there are LC possibilities.
With this exponential search space, we restrict brute-force
search to consider up to six machines. We apply the same
restriction to GASearch for comparison. We use the same
greedy algorithm to schedule tests across machines for both.

C. Metrics

We compare GASearch against each baseline by measuring
the ratio of GASearch’s allocation scheme’s running time
and price over a baseline’s allocation scheme’s running time
and price, respectively. More specifically, we compute the
running time ratio as: Timepara(AG)

Timepara(AB) . Similarly, the price

ratio is: Price(AG)
Price(AB) . AG represents the allocation scheme

that GASearch produces and AB represents the allocation
scheme that the baseline produces. A ratio of 1 indicates that
GASearch produces an allocation scheme that achieves the
same running time or price as the baseline, whereas a value
higher than 1 indicates that GASearch’s result is worse than the
baseline and a value lower than 1 indicates that GASearch’s
result is better than the baseline.

As optimizing for one metric can come at the expense of
the other, e.g., optimizing for lower running time can lead to
a higher price, we introduce a new metric to capture whether
the tradeoff between the two is fair. For an allocation scheme
AG produced by GASearch and another allocation scheme AB

produced by a baseline, we compute the tradeoff as a product
of the two running time and price ratios comparing the two:

Tradeoff(AG, AB) =
Timepara(AG)

Timepara(AB)
× Price(AG)

Price(AB)
(8)

For example, if the running time achieved by AG is twice as
fast as that achieved by AB (i.e., the ratio is 50%) but comes
at twice the price, that tradeoff is somewhat fair, and it results
in a tradeoff value of 1. Having a value greater than 1 would
indicate that the tradeoff is unfair, e.g., the running time is



twice as fast but costs relatively more, while a value less than
1 would indicate that the tradeoff is better, e.g., the running
time is twice as fast yet requires less than twice the price.

For RQ2, we evaluate the effects of changing the weight
parameter α in the fitness function, going from 0 to 1 in steps
of 0.05. At each value of α, we measure the same running time
and price ratios, and compare GASearch against the GitHub
baseline and smart baseline, where smart baseline uses the
same fitness function with the same α.

For RQ3, we measure the overall build failure probability
for an allocation scheme based on the flaky-failure rates of
each test on the machines on which they are scheduled.
Essentially, we are interested in knowing the likelihood of
the entire build failing, which occurs when at least one test
fails. We compute this likelihood by computing the probability
of all tests passing and subtracting that probability from 1.
Given an allocation scheme A, the build failure probability
BuildFail(A) under this allocation scheme is:

BuildFail(A) = 1−
∏

(t,m)∈A

(1− fr(t,m)) (9)

GASearch may not consistently compute the same allo-
cation schemes for the same input information, due to the
nondeterministic nature of the genetic algorithm. As such,
we rerun GASearch five times to obtain different allocation
schemes. We compute the metrics comparing each allocation
scheme against the baselines and report the average across the
allocation schemes for each metric in our evaluation. For the
random baseline, we also rerun it five times to obtain multiple
allocation schemes, and we compare each GASearch allocation
scheme against each one, reporting a final average.

V. EVALUATION

A. RQ1: Heterogeneous vs Homogeneous Machines

Figure 1 compares GASearch against the GitHub baseline,
smart baseline and random baseline for each module in terms
of running time and price, computed considering no setup time
per machine (Section III-C). For each module, we show the
running time ratio and price ratio compared against the three
baselines, with a line representing the average ratios across all
modules. The top figure shows the results when optimizing for
running time only (α = 1) while the bottom figure shows the
results when optimizing for price only (α = 0).

When optimizing for running time only, GASearch outper-
forms the GitHub baseline in 23 modules, with the lowest
running time ratio of 0.33 and an average running time ratio of
0.91. GASearch outperforms the smart baseline in 10 modules,
meaning 14 modules work best with homogeneous machines.
The lowest ratio running time ratio is 0.85, and the average
running time ratio is 0.99. GASearch outperforms the random
baseline in 22 modules, with the range of running time ratio
from 0.41 to 1 and an average running time ratio of 0.83.

When optimizing for price only, all price ratios are less than
1 for all baselines. For the GitHub baseline, the range of price
ratios is from 0.04 to 0.84, with an average ratio of 0.45. For

the smart baseline, the range of price ratios is from 0.54 to
1.00, with an average ratio of 0.81. For the random baseline,
the range of price ratios is from 0.61 to 1.00, with an average
ratio of 0.88. Note that the random baseline results in better
price than the other two baselines, suggesting that simply using
heterogeneous machines, even if determined randomly, can
result in better price than using homogeneous machines.

In general, GASearch does not improve running time as
much over the baselines as compared with price. We find
that tests in a module tend to always run faster on expensive
configurations. Further, the difference in running times of
individual tests does not differ too much across configura-
tions. As we measure the parallel running time, this metric
is largely dominated by the tests with the longest running
times. For example, in module M8, the running time of
test ZookeeperRegistryCenterInitFailureTest-
.assertInitFailure is about 10s on each configuration,
and when using more than 4 machines, the sum of the
running time of all tests on the other machines is less than
the running time of this one test. In this case, GASearch
cannot produce a better heterogeneous solution, because there
is no change to the parallel running time when considering
different configurations for other machines, as those other
tests matter very little. When optimizing for running time, the
homogeneous machines tend to remain the best. On the other
hand, when optimizing for price, there is larger variance in
price between tests across different configurations, allowing
for more space to explore for reducing price.

Figure 2 also compares GASearch against the baselines, but
with the scenario of including a setup time per machine (Sec-
tion III-C). When optimizing for running time only, GASearch
achieves improved running time over the GitHub baseline
across all modules, but the average running time ratio is 0.92.
Compared against the smart baseline, the average running time
ratio is 1.00; most modules have a running time ratio of 1. For
the random baseline, the average running time ratio is 0.35,
much worse than without setup cost.

When optimizing for price only, GASearch performs better
on all modules with the average ratio of 0.56 compared to the
GitHub baseline. When compared to the smart baseline, the
average price ratio is 0.97, where once again most modules
have a price ratio of 1. GASearch and the smart baseline
commonly propose using just one or two machines to reduce
price, so they tend to propose the same machines. Compared
to the random baseline, the average price ratio is 0.57.

In projects with tests that run relatively fast compared to
machine setup time, any deviations in their running time
is overshadowed by the machine setup time. As such, the
best homogeneous and heterogeneous machines ultimately end
up with the same running time and price, with the setup
time being the most important factor. The lower the setup
time, the more relevant it becomes to schedule tests across
heterogeneous machines, to the limit of having no setup time
(effectively copying instead of rebuilding code on machines).
If a developer is running tests in this kind of scenario, then
they would benefit from using heterogeneous machines. For
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Fig. 1. Comparing GASearch running time and price against baselines, without setup time.
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Fig. 2. Comparing GASearch running time and price against baselines, with setup time.

subsequent RQs, we show only the results when setup time
is not included, to illustrate further this scenario and how
heterogeneous machines may help.

B. RQ2: Effect of Fitness Function Weight
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Fig. 3. Tradeoff value as α changes.

A change in the weight parameter α allows GASearch
to consider both factors simultaneously, leading to better
tradeoffs. Figure 3 shows the change in tradeoff as the weight
parameter α changes. At α = 0, i.e., optimizing for price
only, the tradeoff is very poor; the tradeoff of GASearch’s
allocation scheme is 1.36 compared to the GitHub baseline,
1.58 compared to the smart baseline, and 0.88 compared to the
random baseline. The tradeoff is close to 1 at the other extreme
of α = 1, matching our RQ1 findings that the running time
ratio between GASearch and the baselines is close to 1.

When adjusting for α to not be 0 or 1, i.e., combining both
factors, the average tradeoffs across modules become less than
1. Comparing against the GitHub baseline, we observe that the
minimum tradeoff is 0.48 when α is 0.65. GASearch achieves
a running time ratio of 0.99, while saving half of the cost: the
price ratio is only 0.47 of the GitHub baseline.

Comparing against the smart baseline, the minimum tradeoff
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Fig. 4. Comparison of the probability of build failure.

is 0.70 when α is 0.25. GASearch achieves a running time
ratio of 0.86, with a price ratio of only 0.81. Both ratios
being less than 1 show how GASearch can achieve both faster
running time and lower price at the same time, indicating a
good tradeoff between these two factors.

Comparing against the random baseline, the tradeoff is at
its minimum of 0.48 when the α is set to 0.05. GASearch
achieves a running time ratio of 0.53 and a price ratio of just
0.89, an advantageous tradeoff between these two factors.

These results show that, in general, at the extreme values of
α (when GASearch optimizes only for one metric), GASearch
can achieve a larger improvement for the metric being opti-
mized at the detriment of the other one, and the tradeoff may
not be worth it. If a developer cares solely about one metric,
then using these extreme values of α can be beneficial for
them. However, if they need a good balance and are concerned
whether a certain running time improvement is worth the price,
they can tune the parameter α to a better value to achieve a
better tradeoff. Given that the tradeoff is similar across all α
values between 0 and 1, but the best α to use is different
among the baselines, we choose to evaluate the subsequent
RQs using only α = 0.5 for ease of presentation.

C. RQ3: Effect of flaky-failure rate

Figure 4 shows the build failure probability when using the
machines proposed by GASearch, the GitHub baseline, the
smart baseline, and the random baseline across all modules,
with average build failure probabilities of 0.103, 0.071, 0.130
and 0.105, respectively. Most modules have build failure
probability less than 0.1. Modules with high build failure
probability have individual tests with high flaky-failure rate
across all configurations, e.g., in module M17, a test has a
flaky-failure rate of 0.9 on every machine, leading to nearly
0.99 build failure probability for any allocation scheme.

Overall, the GitHub baseline proposes machines with the
lowest average build failure probability, using relatively more
expensive machines that likely have fewer flaky failures.
GASearch and the smart baseline encode the flaky-failure rate
of each test in the fitness function as a chance to rerun. By
balancing these factors together, the fitness function allows
an acceptable chance of flaky failures if the final tradeoff
is reasonable, leading to higher build failure probabilities.
GASearch, on average, achieves a lower build failure probabil-
ity than the smart baseline. Interestingly, the random baseline
achieves a similar build failure probability as GASearch.

M2 M3 M5 M6 M7 M8 M9 M10 M11 M15 M20 M21 M22 M23

ID

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

d
e-

of
f

Avg. of Trade-off

Fig. 5. The tradeoff between normal GASearch and when forcing flaky-failure
rate = 0.

Forcing a low build failure probability may not result in
good reductions of running time or price, leading to lower
tradeoffs as well. We conduct an experiment where we modify
GASearch to only schedule tests on machines on which they
have a flaky-failure rate of 0%. However, some modules
have tests that have a non-zero flaky-failure rate on every
configuration, meaning it is impossible to have a 0% build
failure probability. For this experiment, we use only the 14
modules that can have a 0% build failure probability.

Figure 5 shows the tradeoff between GASearch and 0-flaky-
failure rate GASearch. We compute tradeoff using GASearch
as the baseline. All modules’ tradeoffs are greater than or
equal to 1, with an average of tradeoff of 1.19, meaning
enforcing a 0% flaky-failure rate per test makes the overall
results worse. However, most modules have tradeoffs close to
1, suggesting that GASearch produces allocation schemes that
naturally maintain a 0% build failure probability. On the other
hand, we observe cases where the tradeoff is much worse, e.g.,
M5 has a test that maintains 0% flaky-failure rate on just one
configuration, restricting the approach to schedule the test on
that configuration, but it gives a bad tradeoff.

Only GASearch produced an allocation scheme with a 0%
build failure probability for all 14 modules; the smart baseline
can do so only for 13. In that one module, there are two
tests that can achieve a 0% flaky-failure rate, but only on two
separate configurations. As such, it is impossible to choose
just one configuration for all tests and maintain an overall 0%
flaky-failure rate. on homogeneous machines while maintain-
ing a 0% flaky-failure rate. This example demonstrates another
benefit of scheduling tests across heterogeneous machines,
giving flexibility in ensuring tests have a 0% flaky-failure rate.

D. RQ4: Comparing GASearch vs. Brute-Force

Table III shows the time to run GASearch and the brute-
force search for each module (α= 0.5). The table also shows
the ratio of the fitness values of the best allocation schemes



TABLE III
COMPARING GASEARCH AGAINST BRUTE-FORCE SEARCH

Fitness Value When α= 0.5
Calculation Time (s) Ratio

ID GASearch Brute-Force Fitness Value

M1 47.33 650.41 1.00
M2 113.90 864.52 1.00
M3 1.52 478.73 1.00
M4 19.08 528.19 1.00
M5 0.61 479.49 1.00
M6 1.55 470.58 1.00
M7 9.90 500.51 1.00
M8 14.57 519.32 1.00
M9 5.24 490.40 1.00
M10 0.74 472.51 1.00
M11 1.79 476.38 1.00
M12 10.70 504.43 1.00
M13 106.20 1042.12 1.00
M14 1.01 471.17 1.00
M15 3.31 488.55 1.00
M16 3.04 495.45 1.00
M17 7.24 495.40 1.00
M18 2.41 474.58 1.00
M19 23.52 543.88 1.00
M20 37.49 618.51 1.00
M21 7.91 494.49 1.00
M22 2.56 476.08 1.00
M23 5.57 496.19 1.00
M24 6.20 495.79 1.00

Average 18.06 542.82 1.00

produced by GASearch and the brute-force search. As they
both optimize for the same fitness function, we want to see
how close their solutions’ fitness values compare to each other.

We see that GASearch achieves close to the same fitness
value as brute-force search (less than 0.01 difference), suggest-
ing that GASearch’s solution is optimal for the fitness function.
GASearch runs much faster compared against brute-force
search, needing only about 3% of the time that brute-force
search needs. Also, recall that we could not have brute-force
search parallelize on more than six machines (Section IV-B).

E. RQ5: Effect of Guidance Data

Figure 6 illustrates the tradeoff between one-round data
guided GASearch and full-data guided GASearch (full-data
guided GASearch is the baseline). For 16 modules, we see that
the tradeoff is close to 1 (less than 0.1 difference), suggesting
that using just one round of data (i.e., 10 reruns) can produce
solutions with tradeoffs just as good as when using all data,
so a developer may not need to spend as much time collecting
data as we did before they can schedule tests.

On average, the tradeoff between one-round data guided
GASearch and full-data guided GASearch is 1.53. We observe
some modules with very bad tradeoffs. They contain many
tests whose running times and flaky-failure rates differ greatly
in a single round of data compared against using all.

VI. DISCUSSION

This study delves into the implications of using hetero-
geneous machines for test scheduling, focusing on running
time, price, and flaky-failure rate. This approach still faces

similar challenges faced by traditional strategies that use
homogeneous machines. As code evolves, if test running
times change substantially or flaky-failure rate changes, the
allocation scheme may become worse. We assume such factors
remain stable, so the same allocation scheme can be reused
for a period of time. If there are substantial changes, e.g.,
newly added tests, or enough accumulated changes over time,
developers can re-collect running information for the tests
substantially affected by changes. Developers can then use this
new running information to recompute the allocation scheme.

Our current evaluation assumes no order-dependent tests,
i.e., tests whose outcome depends on other tests [14, 29]. We
assume test dependencies will be provided. Similar to Lam et
al.’s work on order-dependent-test-aware regression testing
techniques [30], we can group tests with their dependencies
as one “unit” and schedule them together.

A technique to schedule tests across heterogeneous ma-
chines requires collecting test running information across var-
ious machine configurations a priori. The smart baseline also
needs to collect that information despite using homogeneous
machines (it needs to know which configuration to use for
all tests), whereas the GitHub baseline only needs to collect
this information for tests on the one configuration it considers.
Regardless, collecting running information can be expensive,
and we imagine developers can run tests across different
machine configurations during off-hours when they are not
actively developing (e.g., during the weekend). This upfront
cost is amortized by future savings in running time and price
from using the determined optimal heterogeneous machines.
We can estimate at what point this upfront cost is worth it.
For example, if we consider just the price, we can compute the
price of collecting running information across the 12 machine
configurations by running the tests on all configurations 10
times (the fewer reruns, as evaluated in RQ5). The GitHub
baseline will require a lower cost, simply rerunning the tests
on the same machine configuration. As GASearch proposes
using heterogeneous machines that result in a lower price
than the GitHub baseline, we can compute after how many
test runs in the future will GASearch result in a lower price
than the GitHub baseline, i.e., if we let R be the number of
test runs when the two have the same price, we solve for R
in the equation R ∗ GitHubPrice + GitHubSetupPrice =
R ∗ GASearchPrice + GASearchSetupPrice, where
GitHubPrice is the price from using the GitHub baseline pro-
posed homogeneous machines, GASearchPrice is the price
from using the GASearch proposed heterogeneous machines,
and the various ∗SetupPrice are the prices needed to collect
running information. If we use the average values for each
of these variables we collected from our study, we estimate
R to be around 151, meaning a developer should expect to
see that using GASearch to produce heterogeneous machines
pays off over the GitHub baseline after 151 test runs in the
future. Given that developers in companies are frequently
making changes that require running tests, e.g., Microsoft
reports hundreds of builds per day for some projects [31],
developers can very quickly break even and save.
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Fig. 6. The tradeoff between one-round data guided GASearch and full-data guided GASearch.

VII. THREATS TO VALIDITY

The results we report may not generalize beyond the
projects and tests on which we evaluate. We use data collected
by prior work [17,18], including test running time and flaky-
failure rate data across different machine configurations, and
we filter further to obtain subjects on which we can fairly
evaluate, namely those with enough complete test data.

We limit GASearch to run for only 50 generations of
improvement, which is more than past software engineering
tasks [32, 33] explored. Running more generations may lead
to a more optimal solution w.r.t. the fitness value. As such,
the numbers we report are a lower limit on how effec-
tive GASearch can be. We later conducted an experiment
running for more generations (100), finding solutions with
similar results. We designed our algorithm for a minimalist
approach to reduce randomness in the process, e.g., we choose
an elitist selection operator where only the best individuals
participate in crossover, which has been found effective for
certain domains [34, 35]. When we use GASearch five times
per module to compute different solutions (Section IV), the
average deviation in the fitness value between them was
less than 1e-6. When we experimented with using selection
operators like Roulette-wheel selection [36] to allow for some
chance of using worse individuals for crossover, the difference
in fitness value was less than 1e-3. Future work can explore
other variations in genetic algorithms to obtain better solutions.

GASearch may not produce as optimal solutions as brute-
force search. However, given that brute-force search is already
much more expensive than GASearch with six machines
(Section V-D) and will become even more expensive with
more machines, GASearch is clearly more practical.

VIII. RELATED WORK

Silva et al. recently studied the effects of different compu-
tational resources on test flakiness [17]. They ran tests from
open-source projects on 12 different machine configurations
300 times to measure the flaky-failure rate of each test on
different configurations. They find that the flaky-failure rate
per test changes based on the configuration. The amount of
resources available on the machine affects the test outcome,
where generally tests are more likely to pass when run on ma-
chines with more resources. We build upon their work by con-
sidering this varying flaky-failure rate depending on machine
configuration as a factor in our problem of scheduling tests.
We directly use their dataset to evaluate our approach [18].

Developers commonly schedule tests across different ma-
chines for faster testing. For example, Microsoft relies on its
internal distributed build system CloudBuild to run tests across
different machines in their cloud environment [7], scheduling
tests the moment they need to be run and machines are avail-
able. There has been work in improving test running time when
using this style of distributed build system for testing, e.g.,
Shi et al. [8] and Vakilian et al. [6] proposed to refactor tests or
code as to help the build system more precisely schedule tests
across machines. Unlike these distributed build systems, we
consider scheduling tests “offline”, deciding which machines
each test should go on ahead of time. Stratis et al. [37]
proposed test scheduling in a heterogeneous system, where
tests can be scheduled on machines with drastically different
hardware, e.g., machines with CPUs and GPUs. While they
consider machines of different configurations, they are also
scheduling tests as soon as resources are available.

Genetic algorithms have been used in prior work for various
software engineering tasks. For example, Le Goues et al. [32]
proposed GenProg to automatically repair buggy code via a
genetic algorithm, where an individual is a sequence of code
edits, with each generation creating different sequences of
code edits with the goal to pass all tests. Fraser and Arcuri [33]
proposed EvoSuite, a technique for automatically generating
Java unit tests via genetic algorithms, where an individual is
a method sequence representing a unit test and the fitness
function is the branch coverage achieved by the tests.

IX. CONCLUSIONS

We propose scheduling tests to run in parallel across hetero-
geneous machines for more efficient testing, unlike traditional
approaches that schedule tests across machines that use the
same configuration for all machines. We present GASearch, a
genetic algorithm approach to schedule tests across heteroge-
neous machines to reduce test running time and price. We also
consider the risks of resource-constrained flaky tests, whose
pass/fail outcomes depend on the machine on which they are
run. We find that GASearch can schedule tests better than
baselines that schedule tests across homogeneous machines.
By adjusting the weights in the fitness function, GASearch
can also schedule tests to better balance the tradeoffs between
running time and price.
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