
Third-Party Library Dependency for Large-Scale SCA in the C/C++
Ecosystem: How Far Are We?

Ling Jiang†
Southern University of Science and

Technology
Shenzhen, China

11711906@mail.sustech.edu.cn

Hengchen Yuan
Southern University of Science and

Technology
Shenzhen, China

11911202@mail.sustech.edu.cn

Qiyi Tang
Tencent Security Keen Lab

Shanghai, China
dodgetang@tencent.com

Sen Nie
Tencent Security Keen Lab

Shanghai, China
snie@tencent.com

Shi Wu
Tencent Security Keen Lab

Shanghai, China
shiwu@tencent.com

Yuqun Zhang∗
Southern University of Science and

Technology
Shenzhen, China

zhangyq@sustech.edu.cn

ABSTRACT
Existing software composition analysis (SCA) techniques for the
C/C++ ecosystem tend to identify the reused components through
feature matching between target software project and collected
third-party libraries (TPLs). However, feature duplication caused
by internal code clone can cause inaccurate SCA results. To mit-
igate this issue, Centris, a state-of-the-art SCA technique for the
C/C++ ecosystem, was proposed to adopt function-level code clone
detection to derive the TPL dependencies for eliminating the redun-
dant features before performing SCA tasks. Although Centris has
been shown effective in the original paper, the accuracy of the de-
rived TPL dependencies is not evaluated. Additionally, the dataset
to evaluate the impact of TPL dependency on SCA is limited. To
further investigate the efficacy and limitations of Centris, we first
construct two large-scale ground-truth datasets for evaluating the
accuracy of deriving TPL dependency and SCA results respectively.
Then we extensively evaluate Centris where the evaluation results
suggest that the accuracy of TPL dependencies derived by Centris
may not well generalize to our evaluation dataset. We further infer
the key factors that degrade the performance can be the inaccurate
function birth time and the threshold-based recall. In addition, the
impact on SCA from the TPL dependencies derived by Centris can
be somewhat limited. Inspired by our findings, we propose TPLite
with function-level origin TPL detection and graph-based dependency
recall to enhance the accuracy of TPL reuse detection in the C/C++
ecosystem. Our evaluation results indicate that TPLite effectively

† Ling Jiang is also affiliated with the Research Institute of Trustworthy Autonomous
Systems, Shenzhen, China.
* Yuqun Zhang is the corresponding author. He is also affiliated with the Research
Institute of Trustworthy Autonomous Systems, Shenzhen, China and Guangdong
Provincial Key Laboratory of Brain-inspired Intelligent Computation, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, United States
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598143

increases the precision from 35.71% to 88.33% and the recall from
49.44% to 62.65% of deriving TPL dependencies compared with Cen-
tris. Moreover, TPLite increases the precision from 21.08% to 75.90%
and the recall from 57.62% to 64.17% compared with the SOTA aca-
demic SCA tool B2SFinder and even outperforms the well-adopted
commercial SCA tool BDBA, i.e., increasing the precision from
72.46% to 75.90% and the recall from 58.55% to 64.17%.

CCS CONCEPTS
• Software and its engineering→ Reusability; Software libraries
and repositories.

KEYWORDS
Software Composition Analysis, Code Clone Detection, Mining
Software Repositories

ACM Reference Format:
Ling Jiang†, Hengchen Yuan, Qiyi Tang, Sen Nie, ShiWu, and Yuqun Zhang∗.
2023. Third-Party Library Dependency for Large-Scale SCA in the C/C++
Ecosystem: How Far Are We?. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’23), July
17–21, 2023, Seattle, WA, United States. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597926.3598143

1 INTRODUCTION
Software composition analysis (SCA) [9, 27] intends to identify
and manage the open-source components contained in software
projects, where the components refer to the reused TPLs with their
corresponding versions. Relying on the SCA results, developers
can effectively track the potential threats introduced to software
projects, such as vulnerability propagation [8] and license viola-
tion [13, 81]. For the widely-spread C/C++ ecosystem, while many
proposed SCA techniques [11, 13, 58, 68, 78] advance the compo-
nent identification by matching the features between target soft-
ware project and collected TPLs based on their similarities, they
have also been shown ineffective when encountering internal code
clone [13, 68] where one TPL depends on other TPLs via code
reuse. Such an issue can further cause inevitable feature duplica-
tion across collected TPLs which can compromise the SCA results,
i.e., incurring false positives during feature matching.

https://doi.org/10.1145/3597926.3598143
https://doi.org/10.1145/3597926.3598143

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

Recently, Centris [68], a state-of-the-art SCA technique for the
C/C++ ecosystem, has been proposed to mitigate the issue of fea-
ture duplication by deriving the TPL dependencies when building
the SCA database (in this paper, one TPL dependency represents
the code reuse relation between TPLs, e.g., a dependency from 𝑡𝑝𝑙𝑠
to 𝑡𝑝𝑙𝑟 indicates that 𝑡𝑝𝑙𝑠 reuses 𝑡𝑝𝑙𝑟). To derive the TPL depen-
dencies, since there exists no unified package management tool
(e.g., Maven [3] in JAVA) to manage TPL dependencies in the C/C++
ecosystem, Centris adopts function-level code clone detection to
identify duplicated functions between TPLs. Accordingly, Centris
determines the exact TPL dependency under the assumption that
the reused TPL should have earlier function birth time and then
eliminates the redundant features, e.g., redundant function signa-
tures, introduced by the reused TPLs. Although Centris has shown
significant enhancement of SCA precision (from 5% to 95%) in the
original paper, it does not evaluate the accuracy of the derived
TPL dependencies. Meanwhile, the evaluation of how the derived
TPL dependencies impact the SCA results is limited (only on four
software projects in the original paper). Moreover, the SCA tasks
are performed at the source code level which leads to a potential
availability issue for real-world applications. Therefore, it is unclear
whether the effectiveness of Centris can be generalized to other
evaluation datasets and setups.

In this paper, to extensively understand the efficacy and limi-
tations of Centris, we investigate the accuracy of its derived TPL
dependencies and their impacts on the SCA results. To this end, we
construct two ground-truth datasets composed of 2,150 TPL depen-
dencies out of 1,035 TPLs for TPL reuse detection and 128 binary
files for SCA respectively. To our best knowledge, they are both
the largest ground-truth datasets of their respective domain in the
existing literature. Our study results suggest that the accuracy of
TPL dependencies derived by Centris and their impacts on SCAmay
not well generalize to our evaluation dataset. Specifically, Centris
only achieves 35.71% precision and 49.44% recall for deriving the
TPL dependencies based on the ground-truth data, which are rather
unsatisfying as suggested by prior works [38, 57, 63]. Moreover, by
adapting the TPL dependencies derived by Centris in all the 10,241
TPLs of its original paper to a well-established commercial binary
SCA engine BinaryAI [6], the precision only increases from 25.76%
to 56.12% and the recall even decreases from 56.34% to 53.28%,
indicating that the performance advantage is somewhat limited
compared with the original paper (i.e., increased precision from
5% to 95% with the same recall). We further investigate the major
factors that impact the performance of Centris and find that the
inaccurate function birth time and the threshold-based recall can
potentially compromise the effectiveness of the TPL reuse detection
by Centris.

Inspired by the findings of our study, we propose TPLite to im-
prove over Centris in terms of the accuracy of TPL reuse detection.
First, TPLite applies function-level origin TPL detectionwhich supple-
ments the birth time with hierarchical path information and meta
information, i.e., included header files, software bill of materials
files, and licenses, as the input to detect the TPL from which the
target function originates (defined as the origin TPL in this paper).
Furthermore, TPLite adopts graph-based dependency recall to de-
rive the TPL dependencies upon the collected origin TPLs. More

specifically, TPLite first applies coarse-grained detection to initial-
ize the TPL dependency collection and then uses centrality-based
filter to identify and remove the invalid TPL dependencies based
on the PageRank [46] algorithm. Our evaluation results indicate
that TPLite effectively enhances the accuracy of deriving TPL de-
pendencies, i.e., the precision increases from 35.71% to 88.33% and
the recall increases from 49.44% to 62.65% compared with Centris.
Meanwhile, we also apply TPLite for SCA via adapting their de-
rived TPL dependencies to BinaryAI [6]. We find that TPLite can
also significantly outperform Centris by improving the precision
from 56.12% to 75.90% and the recall from 53.28% to 64.17% for
SCA. Moreover, TPLite even outperforms the well-adopted state-of-
the-art commercial SCA tools, e.g., BDBA [11], by improving the
precision from 72.46% to 75.90% and recall from 58.55% to 64.17%.

To summarize, our paper makes the following contributions.

• Dataset: We construct two ground-truth datasets with 2,150
dependencies across 1,035 TPLs and 128 binary files for the C/C++
ecosystem, which can serve as the benchmark suites for future
studies of TPL reuse detection and binary-level SCA.
• Study: We perform an extensive study on the state-of-the-art
SCA technique for the C/C++ ecosystem Centris on our large-
scale dataset. We find that both its accuracy of deriving TPL
dependencies and its impact on SCA may not well generalize to
our evaluation dataset. Moreover, inaccurate function birth time
and threshold-based recall can be the key factors to degrade the
performance of Centris.
• Technique:We propose TPLite based on the study findings to
significantly improve the accuracy of deriving TPL dependencies.
Moreover, we are the first to adapt the TPL dependencies to the
binary-level SCA engine and find that it outperforms the existing
state-of-the-art binary-level SCA tools.

2 BACKGROUND
2.1 Software Composition Analysis
Software composition analysis (SCA) typically refers to the compo-
nent identification in the target software project for tracking the
security threats and license violations introduced by TPLs [9, 13, 27].
Many existing SCA techniques [13, 35, 68, 78, 80] construct a large-
scale TPL database with their extracted software features (generally
the syntactic features such as string literal [13, 21, 78] and function
signature [29, 31, 68]) and then identify the third-party compo-
nents by matching the TPL features based on their similarities with
the target software project. In particular, when the number of the
common features between the target software project and a TPL
exceeds a preset threshold, we recognize the TPL as a component
of the target software project.

Prior works [13, 68, 78] indicate that identifying the third-party
components is challenging in large-scale SCA due to the inevitable
internal code clone [13, 68] (i.e., the given TPL reuses the source
code of other TPLs directly) which can potentially cause vast false
positives. In particular, when one TPL highly reuses the code of
other TPLs, it is likely that such TPLs would be also recognized as
the components of target software project. As a result, the accuracy
of component identification can be degraded by introducing irrele-
vant vulnerabilities/licenses [13, 78]. Figure 1 presents an internal

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

code clone example where TPLs nodejs, openMVG and assimp di-
rectly reuse the whole project of TPL zlib. More specifically, nodejs
even indirectly reuses zlib via directly reusing TPL v8. Applying
many existing SCA techniques [13, 21, 61, 78] in this case can eas-
ily result in false positives, e.g., while the target software project
actually only reuses zlib, other TPLs reusing zlib are also recog-
nized as the components in the target software project. Note that
multiple existing SCA techniques attempt to alleviate such false
positives. Specifically, OSSPolice [13] and B2SFinder [78] propose
hierarchical schemes based on source directory and filtering poli-
cies respectively to reduce the false positives in SCA. However,
their strategies are only designed for the intact code reuse of the
TPLs (i.e., allowing no structural or source code modifications of
the TPL) and thus compromise the SCA results.

openMVG src/third_party/zlib zlib

nodejs

assimp

node/deps/zlib zlib

assimp/contrib/zlib zlib

NodeJS

zlib v8

zlib

. . .

Figure 1: Illustration of internal code clone

2.2 State-of-the-Art Centris
Centris [68], a state-of-the-art SCA technique for the C/C++ ecosys-
tem, utilizes code clone detection to derive the TPL dependen-
cies upon large-scale TPL collection and eliminates the redundant
features introduced by internal code clone. Figure 2 presents the
workflow of Centris. Specifically, Centris first extracts the function
signature information (i.e., hash value of the function body) across
all versions/tags as the feature for each collected TPL. Moreover,
Centris performs the TPL reuse detection to derive the TPL depen-
dencies in the form of a directed graph where each TPL is denoted
as a vertex and each TPL dependency is denoted as an edge. Ac-
cordingly, Centris removes the redundant features for each TPL,
i.e., for a given TPL, removing the union of the features of all its
reused TPLs. Next, Centris generates the TPL database via inverted
index mapping of features to the corresponding TPLs and iden-
tifies the components online via feature matching as other SCA
techniques [13, 61, 62, 76, 78].

Then we further illustrate how Centris performs the TPL reuse
detection. First, Centris obtains the duplicate functions between
two TPLs via code clone detection. Meanwhile, Centris extracts the
birth time for each duplicate function, i.e, the earliest release time
in the corresponding TPL. Next, assuming that for a given TPL,
its reused TPL should enable earlier function birth time, Centris
computes whether the ratio of the amount of the duplicate functions
with earlier birth time to the total function amount of the reused
TPL surpasses a preset threshold \ (i.e., 0.1) to derive the TPL
dependency. Note that while many approaches [42, 71, 74, 77] have
been proven effective for clone detection, they are not applicable
for deriving TPL dependency and thus fail to alleviate redundant
features.

TPL Dataset

R
ed

un
da

nt
 F

ea
tu

re

El
im

in
at

io
n

In
de

x
C

on
st

ru
ct

io
n

TPL Feature
Extraction

TPL Reuse
Detection

TPL Dependency

TPL Features

TPL Database

Stage 1: Construction of TPL Database (offline)

Target Software

TPL Database Stage 2: Component Identification (online)

Feature Matching

Library
Identification

Version
Identification

Component List

Bug Propagation

License Violation

Figure 2: The workflow of Centris

We notice that while Centris is proposed to detect TPL reuse,
the accuracy of its derived TPL dependency is not evaluated in
the original paper. Meanwhile, the evaluation of the impact of the
derived TPL dependencies on SCA is limited. Such facts potentially
compromise the effectiveness of Centris. Thus, there is a pressing
need for an extensive study on Centris to comprehensively delineate
its effectiveness and limitations in TPL reuse detection and SCA.

3 STUDY ON CENTRIS
3.1 Dataset
To extensively study how Centris performs in TPL reuse detection
and SCA tasks respectively, we need to construct the datasets of
ground-truth TPL dependencies and SCA results, as many existing
works [62, 68, 76, 78, 80].

3.1.1 Ground-truth TPL dependencies. To our best knowledge, there
is no existing well-formed dataset of TPL dependencies of C/C++
programs. In this paper, considering the workload of manual cali-
bration, we strictly follow previous works [13, 63, 76, 80] to select
top 1K mostly reused TPLs from the dataset adopted by the orig-
inal Centris paper which includes the open-source projects from
the GNU/Linux community (e.g., glibc [5] and e2fsprogs [1]) and
C/C++ GitHub repositories with over 1K stars (e.g., zlib [54] and
libjpeg [50]). We then derive their dependencies after rigorously
analyzing the directory, file paths, included headers, and the infor-
mation contained in the copyright, license, and README for each
TPL. As a result, we extract 2,150 TPL dependencies as the ground
truth.

3.1.2 Ground-truth SCA results. Note that in the original paper of
Centris, the ground-truth SCA results are not publicly available. In
this paper, we determine to derive the ground-truth SCA results on
top of the collected 10,241 TPLs of the Centris paper. In particular,
we target binary-level SCA rather than the original source-code-
level SCA due to following reasons. First, binary-level SCA can be
generally more reliable than source-code-level SCA when source
code is unavailable [20]. Next, binary-level SCA can be integrated
at the development or deploy phase during DevOps [61, 62, 76, 78].
However, source-code-level SCA like Centris in the original pa-
per can only analyze the source files before the build phase which
can be potentially risky since the components introduced during
compilation can potentially have vulnerabilities, e.g., dynamic-link
library [21]. Note that although Centris performs source-code-level

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

Table 1: SCA test case samples

Software Binary Version Sys/Arch† #TPLs Sample TPLs

terarkdb db_bench v1.3.6 arch linux/x86_64 15 bzip2, zlib, lz4, xxHash
ClickHouse clickhouse v22.1.2.2 macOS/arm64 61 libxml2, grpc, libexpat
TIC-80 tic80.exe v0.90.1723 windows/x86_64 15 blip-buf, libpng, dirent
kvrocks kvrocks v2.0.5 ubuntu/i386 12 glibc, libevent, rocksdb
Tendis tendisplus v2.4.3 ubuntu/x86_64 15 glibc, rapidjson, snappy
† The system and architecture applied to compile the binary

SCA in the original paper, we can still utilize its derived TPL de-
pendencies to remove redundant features and construct the TPL
database for binary-level SCA.

We then construct our binary-level SCA testset compiled by
75 C/C++ open-source software projects with manually labeled
components as the test cases. In particular, we first attempt to iden-
tify influential projects with over 1K stars in their corresponding
GitHub repositories, and further select the ones with over 10 sub-
modules since such projects are more likely to have multiple reused
TPLs to facilitate SCA. Next, we compile the source code of the
75 selected projects into 128 binary files as input for online com-
ponent identification based on multiple compiler configurations.
More specifically, we follow previous works [13, 61, 78] to strip
all the binary files where variable names and function names are
removed. Furthermore, we hook the compiler (i.e., gcc [4]) to parse
the DWARF information [2] during compilation and extract the
compiled files for deriving their contained components as the la-
beled data. Table 1 presents multiple SCA test case samples. For
instance, project ClickHouse (an open-source database management
system with 27K+ stars in GitHub [51]) is compiled into the binary
file clickhouse which contains 61 manually labeled components (e.g.,
grpc) as the ground-truth SCA results.

To our best knowledge, the two ground-truth datasets above
are the largest datasets in their respective domain, which are both
presented in our GitHub repository [55].

3.2 Experimental Setup
To evaluate the accuracy of TPL reuse detection (i.e., deriving TPL
dependencies) of Centris and its impact on the SCA results respec-
tively, we adopt the following metrics: true positives (TP, correct
TPL dependencies derived by Centris), false positives (FP, incorrect
TPL dependencies derived by Centris), false negatives (FN, missed
TPL dependencies in the ground-truth data), Precision (i.e., the ratio
of true positives to the resulting TPL dependencies by Centris),
Recall (i.e., the ratio of true positives to the ground-truth TPL de-
pendencies), and F1 score (i.e., measuring accuracy by combining
precision and recall). All our evaluation results are averaged out of
10 runs to reduce the impact from randomness. All the experiments
are conducted on a machine with Linux VM-187-4-centos 5.4.119,
AMD EPYC 7K62 48-Core Processors and 32 GiB RAM.

3.3 Research Questions
We investigate following research questions for studying Centris:
• RQ1: How does Centris perform in TPL reuse detection and SCA?
For this RQ, we evaluate the performance of Centris with the
accuracy of the derived TPL dependencies and the SCA results.

• RQ2: What are the major factors that impact the performance
of Centris? For this RQ, we further investigate the factors that
impact the performance of Centris based on the results from RQ1.

3.4 Results and Analysis
3.4.1 RQ1: Performance of Centris. We first investigate the accu-
racy of the derived TPL dependencies by Centris on top of our
collected ground-truth 2,150 TPL dependencies (as in Section 3.1.1).
Table 2 demonstrates the evaluation results in terms of diverse
reuse ratio threshold (defined as \) setups. Note that in addition to
retain the \s adopted by the original Centris paper (i.e., 0.05, 0.1,
0.15, and 0.2), we also include more \s. Specifically, we adopt 0.01 to
mainly assess the FN performance and 0.5 and 0.75 to mainly assess
the precision of the TPL dependencies when only highly reused
TPLs can be recognized. We can observe while the original version
of Centris (i.e., \ is 0.1) achieves the optimal performance in terms
of the F1 score (41.47%), it is somewhat unsatisfying. To illustrate,
Centris results in around 2X false positives (1,914) compared with
true positives (1,063) and misses nearly half of the ground-truth
TPL dependencies (1,087). We further investigate the 1,914 false
positives and find that 286 out of them are opposite to the ground
truth. For example, while in fact, project tigervnc reuses project
zlib, Centris derives that zlib reuses tigervnc. Such an opposite TPL
dependency can lead to feature elimination errors, i.e., the features
can be mistakenly removed from zlib and retained in tigervnc, and
further cause component identification errors in SCA. Moreover,
we can also observe from Table 2 that no matter how to set \ , Cen-
tris results in limited precision/recall. To illustrate, even when \ is
set to 0.75 which indicates more than three-quarters of the func-
tions are reused between TPLs, the precision is only 62.71% with
37 true positives and 22 false positives. On the other hand, Centris
only recalls 69.35% TPL dependencies when \ is set to 0.01 and
misses 659 dependencies in the ground truth. Therefore, we can
summarize that the Centris is somewhat ineffective in deriving TPL
dependencies.

Finding 1: The accuracy of TPL dependencies derived by Centris
may not well generalize to other datasets.

Table 2: Accuracy of TPL reuse detection by Centris

Threshold
Verification of TPL dependency

Total #TP #FP #FN Precision(%) Recall(%) F1(%)

0.75 59 37 22 2,113 62.71 1.72 3.35
0.50 261 159 102 1,991 60.92 7.40 13.20
0.20 1,611 662 949 1,488 41.09 30.79 35.20
0.15 2,118 839 1,279 1,311 39.61 39.02 39.31
0.10 2,977 1,063 1,914 1,087 35.71 49.44 41.47
0.05 4,349 1,300 3,049 850 29.89 60.47 40.01
0.01 8,447 1,491 6,956 659 17.65 69.35 28.14

We further evaluate how TPL dependencies impact on the large-
scale binary-level SCA upon a well-established commercial binary
SCA engine BinaryAI [6], which uses string literals as features to
match target binary files and source code of TPLs. As described in

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

Section 2.1, we can expect to delete the duplicate software features
based on the correct TPL dependencies for augmenting the SCA
accuracy. Table 3 presents the results of the online component iden-
tification of SCA in terms of multiple TPL dependency options, i.e.,
ground-truth TPL dependencies (denoted as “Ground truth-1k”),
the TPL dependencies derived by Centris on top of 1K mostly reused
TPLs (denoted as “Centris-1k”), the TPL dependencies derived by
Centris on top of all TPLs (denoted as “Centris-10k”), and no TPL
dependency adopted (denoted as “No dependency”). We can ob-
serve that adopting ground-truth TPL dependencies can effectively
improve the SCA precision (from 25.76% to 45.90%) and recall (from
56.34% to 61.17%) compared with adopting no TPL dependency.
Such results indicate that redundant feature elimination based on
even limited number of TPL dependencies (2,150) can already ef-
fectively alleviate the issue of internal code clone and improve the
accuracy of SCA. Moreover, adopting Centris-1k incurs inferior SCA
precision compared with adopting ground-truth TPL dependencies
(32.44% vs. 45.90%). It even incurs lower recall than adopting no TPL
dependency (50.71% vs. 56.34%). Such results indicate that Centris
tends to derive invalid TPL dependencies which lead to erroneous
redundant feature elimination in TPLs during SCA. Moreover, we
also find adopting larger-scale TPL dataset for Centris, i.e., Centris-
10k, incurs limited 𝐹1 score improvement (from 52.45% to 54.66%)
compared with adopting ground-truth TPL dependencies. Mean-
while, noticing that Centris evaluates the impact of TPL dependency
only on four projects in the original paper where the SCA precision
is improved from 5% to 95% after performing the redundant feature
elimination, our study on the 128 binary files compiled from the 75
selected projects shows that the SCA precision is increased from
25.76% to 56.12% which indicates that the performance of Centris
may not well generalize to diverse scenarios. In summary, we can
derive from all the facts that Centris delivers limited effectiveness
of applying the TPL reuse detection for SCA.

Finding 2: While the redundant feature elimination based on
TPL dependencies can advance the SCA results, Centris may
be limited in leveraging the power of TPL reuse detection.

Table 3: SCA results with TPL dependency

TPL dependency
Verification of SCA results

Precision(%) Recall(%) F1(%)

No dependency 25.76 56.34 35.35
Ground truth-1k 45.90 61.17 52.45

Centris-1k 32.44 50.71 39.57
Centris-10k 56.12 53.28 54.66

3.4.2 RQ2: Impact factors of Centris. Previous findings indicate
that the accuracy of the TPL dependencies derived by Centris is
limited and further compromises the SCA results. We then analyze
the potential reasons behind the limitations of Centris. In particular,
we follow prior works [61, 62, 68, 80] to study the reasons behind
limited precision (reflected by false positives) and recall caused by
Centris. First, for the false positives, we infer that they are largely

caused by inaccurate function birth time. To illustrate, Table 4 lists
multiple TPLs commonly reusing source file deflate.c from TPL
zlib with their respective corresponding birth time. Surprisingly,
all the functions of deflate.c share the same birth time (i.e., 2011-
09-10) under commit-bcf78a2 [54] while we discover that these
functions were actually first introduced in 1995 [49].We then realize
that the zlib project had no version control in early years and was
migrated to git later. As a result, all its prior time stamps were lost
during migration, resulting in inaccurate birth time information.
Furthermore, we manually analyze all the false cases (1,914 FP
and 1,087 FN) and find that 1,336 FP and 215 FN are caused by
inaccurate function birth time. Note that to determine the correct
function birth time, we manually search all the information in the
repository, including the link to the original project, and the time
that appeared in the project copyright. Nevertheless, the reason
behind the incorrect birth time is elusive, as there are limited hints
to track the explicit reasons–some TPLs (e.g., zlib) lose their history
due to migration of repository, or some code of TPLs (e.g., lzma) is
reused before tagging a specific version.

Finding 3: Inaccurate function birth time significantly com-
promises the accuracy of Centris for TPL reuse detection.

Table 4: Birth time of reused functions from zlib

TPL Name Source file directories Birth time

rsync zlib/deflate.c 1998-05-14 07:22:45
wxWidgets src/zlib/deflate.c 1998-05-20 14:02:15
gdal frmts/zlib/deflate.c 2001-09-15 21:50:31
mysql-server zlib/deflate.c 2002-04-21 10:06:34
llvm-project llvm/runtime/zlib/deflate.c 2004-03-19 21:59:23
CMake Utilities/cmzlib/deflate.c 2006-04-18 20:40:40
libpng deflate.c 2009-04-16 15:46:37
tigervnc common/zlib/deflate.c 2009-04-30 11:41:03
libwebsockets tmp/win32port/zlib/deflate.c 2011-04-24 07:12:38
zlib deflate.c 2011-09-10 06:19:21

We then investigate the potential reason behind limited recall
caused by Centris. In general, we can easily observe that the recall
performance of Centris is highly related with the different setups
of reuse ratio threshold \ . For instance, Centris achieves the recall
of 49.44% and 69.35% under the \s 0.10 and 0.01 respectively, i.e.,
around 20% ground-truth TPL dependencies can be recalled under
\ 0.01 and cannot be recalled under \ 0.10. We then infer that the
less reuse between TPLs is, the lower recall it causes. Furthermore,
we suspect that fixating the reuse ratio threshold \ can hardly
optimize the recall performance of Centris. To illustrate, for a given
𝑡𝑝𝑙𝑖 and any other possible 𝑡𝑝𝑙 𝑗 , we first compute its reuse ratio
𝜓 𝑗 (𝑖) which is the percentage of function amount that 𝑡𝑝𝑙 𝑗 reusing
𝑡𝑝𝑙𝑖 over the total function amount of 𝑡𝑝𝑙𝑖 , and then we derive the
average reuse ratio𝜓𝑎𝑣𝑔 (𝑖) upon all the collected𝜓 𝑗 (𝑖)s. Figure 3a
presents the number of TPLs distributed in different𝜓𝑎𝑣𝑔 intervals.
We can observe that𝜓𝑎𝑣𝑔s enormously vary for different TPLs. For
instance, more than 50% functions are reused in 42 TPLs while less
than 2.5% functions are reused in 116 TPLs. We further investigate
how𝜓 distributes in specific TPLs. Specifically, we target the five

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

0.5 00.4 0.3 0.2 0.1

116

N
um

be
r

of
 T

PL
s

42 TPLs:
0.5 ≤ ψavg ≤ 1

50

25

(a) Average reuse ratio
2022/10/27 14:33

第1/1⻚https://www.makeapie.cn/echarts_preview/boxplot-light-velocity?ech…youtWidth=[]&layoutHeight=[]&origin=https%3A%2F%2Fwww.makeapie.cn

R
eu

se
d

Fu
nc

tio
n

R
at

io
 (%

)

zlib googletest catch2sqlite lua

80

40

20

60

(b) TPL reuse distribution

Figure 3: Illustration of the TPL reuse pattern

mostly reused TPLs (i.e., zlib, googletest, catch2, sqlite and lua) in our
ground-truth dataset. Figure 3b presents that𝜓 can be distributed
quite divergently among different dependencies for specific TPLs.
For instance, 𝜓 (zlib) ranges from 0.27% to 50.96%. To summarize,
setting a constant𝜓 threshold may not well reflect the divergent𝜓
distribution for a single TPL, let alone all TPLs.

Finding 4: The reuse ratio can be quite divergent for different
TPL dependencies. Thus, a fixed threshold to denote the reuse
ratio may not well generalize to different TPL dependencies.

3.5 Discussion
Our study findings so far have indicated that the accuracy of TPL
dependency by Centris and its impact on the binary-level SCA are
somewhat limited in our evaluation dataset. As mentioned in Sec-
tion 2.2, Centris derives the TPL dependencies using the function
birth time and recalls them based on the fixated reuse ratio thresh-
old. In this section, we first attempt to discuss the limitations of
the mechanism of Centris. In particular, as in Finding 3, due to
the inaccurate function birth time, it is error-prone to detect the
TPL from which the target function originates, i.e., the origin TPL,
which thus can decrease the precision of the TPL dependency de-
rived by Centris and further cause erroneous redundant feature
elimination. Intuitively, one can use more information to augment
the accuracy when identifying origin TPLs, such as the source di-
rectory information of TPLs. For instance, when rsync is incorrectly
identified as the origin TPL for the functions in file deflate.c
solely based on its birth time, using its source directory informa-
tion (i.e., zlib/delate.c) in rsync can correctly identify that the

inclusive functions in deflate.c should originate from zlib. In ad-
dition, more meta information from the repositories containing the
corresponding TPLs can enhance the accuracy of identifying the
origin TPL, e.g., for the file deflate.c, its included header files (e.g.,
<#include "zlib.h">), software bill of materials (SBOM) files for the
package management tools [63] (e.g., CMakeLists.txt, configure.ac),
and licenses, since such meta information can potentially include
the hints to infer the dependency in C/C++ projects [13, 16, 45, 48].
Furthermore, noticing that modified code reuse (i.e., functions being
reused with modified code) commonly exists in TPL dependencies
where similar functions share the same origin TPL, we consider it
is essential to identify such modified code reuse prior to applying
the aforementioned information for identifying the origin TPL.

Finding 4 indicates that it is rather challenging to derive the
accurate TPL dependency with a fixed reuse ratio threshold. Intu-
itively, we could rebuild the way to derive recall to improve the
accuracy of deriving TPL dependencies. More specifically, we can
first adopt Centris to initialize the dependencies in a coarse-grained
manner to include as many potential TPL dependencies as pos-
sible. Then we can further develop specific rules to identify and
filter the introduced invalid TPL dependencies to increase the pre-
cision while maintaining the recall performance. Note that Centris
models the TPL dependencies as a directed graph in the original
paper (as introduced in Section 2.2), which can somewhat compro-
mise the effectiveness of the downstream SCA task since Centris
would drop all the overlapped features from the TPL database if
the corresponding TPL dependencies form a (partial) cyclic graph.
For instance, assume 𝑡𝑝𝑙𝑠 and 𝑡𝑝𝑙𝑟 include functions {𝑠1, 𝑠2, 𝑟1} and
{𝑟1, 𝑟2, 𝑠1} respectively. If 𝑡𝑝𝑙𝑠 and 𝑡𝑝𝑙𝑟 form reuse relations on each
other in the derived TPL dependencies, Centris would completely
drop the overlapped functions {𝑠1, 𝑟1}, leaving only {𝑠2} and {𝑟2}.
Such feature loss can limit the effectiveness of performing the SCA
task [13, 61, 78]. However, if we identify the reuse relation from
only one side (e.g., 𝑡𝑝𝑙𝑠 reuses 𝑡𝑝𝑙𝑟) to retain the features {𝑠1, 𝑟1} in
𝑡𝑝𝑙𝑟 , such a performance issue on SCA could be alleviated. Thus, we
tend to model the TPL dependencies in the form of a directed acyclic
graph (DAG) to contain full features for facilitating SCA. Accord-
ingly, we can assign each edge a weight reflecting the reuse ratio
𝜓 𝑗 (𝑖) given 𝑡𝑝𝑙 𝑗 reusing 𝑡𝑝𝑙𝑖 , and use well-established mechanisms
such as the centrality algorithms [18, 28, 46] to further analyze the
dependency graph.

Presumably, we can model the centrality to reflect the influence
of a node in the graph (i.e., TPL in dependency graph) and adopt
multiple metrics to measure the centrality [43] such as the degree
centrality which simply reflects the number of neighbors. However,
applying degree centrality tends to cause local optima and can
hardly manifest the influence of a node in the entire graph [7, 72].
On the contrary, since eigenvector centrality measures the tran-
sitive influence of neighbors and iteratively calculates the global
influence for each node, we thus can render the dependencies that
originate from high-scoring nodes to contribute more to their neigh-
bors. Note that prior works [17, 37] show that degree centrality
and eigenvector centrality tend to be highly consistent in large
and stable relationship graphs (e.g., web links). Accordingly, their
divergences can be potentially used to indicate the validity of the
graph relationships. More specifically, nodes with high degree (here
we only discuss in-degree which indicates the number of incoming

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

dependencies to the TPL) centrality and eigenvector centrality in
TPL dependency are expected to be widely reused (e.g., zlib). On the
other hand, nodes with high eigenvector centrality but low degree
centrality indicates abnormal TPL dependency, i.e., the influence
of these nodes is contributed to by high-scoring neighbors while
they have rather limited incoming edges. To illustrate, we consider
such edges indicate invalid TPL dependencies because such a TPL
reuse pattern generally contradicts the common TPL reuse pattern
in real-world software development.

4 APPROACH: TPLITE
Inspired by our findings of the study on Centris and the discussion
thereafter, we propose TPLite to improve over Centris in terms of
the accuracy of TPL reuse detection and SCA. Figure 4 presents the
framework of TPLite which consists of two components—function-
level origin TPL detection and graph-based dependency recall. In
particular, TPLite first adopts function-level origin TPL detection
which not only extracts function birth time but also utilizes source
directory information to identify the origin TPLs (Section 4.1). Next,
TPLite applies graph-based dependency recall to derive the TPL
dependencies upon the collected origin TPLs via the centrality
algorithm (Section 4.2).

Function Signature

+
1998/05/14
birth time

zlib/deflate.c
source dirs

Stage 1: Function-level
Origin TPL Detection

Stage 2: Graph-based
Dependency Recall

TPL Dependency
TPL Dataset

Modified Function
Reuse Detection

Coarse-grained
Detection

• In-degree centrality
• PageRank centrality

Centrality-based Filter

Origin TPL

Hierarchical Path Matching

TPL Metadata Resolving

LicenseSBOMHeader

TPL Candidates

Figure 4: The framework of TPLite

4.1 Function-level Origin TPL Detection
Function-level origin TPL detection consists of three steps: (1) modi-
fied function reuse detection, (2) hierarchical path matching, and
(3) TPL metadata resolving, as illustrated in Algorithm 1.

4.1.1 Modified Function Reuse Detection. Prior works [13, 41, 60,
67, 68] indicate that code reuse with code changes, i.e., modified
code reuse, commonly exists in TPL dependencies. For instance,
project SQLiteCpp reuses a single file sqlite.c [52] which is “an auto-
generated amalgamation of all the sources files” from sqlite [53],
where SQLITE_PRIVATE is added as an access modifier for all the
functions during auto-generation. Thus it is essential to identify
all the modified code reuse before detecting that all the functions
actually originate from sqlite. To this end, TPLite is initialized to
perform modified function reuse detection to identify the functions
similar with input function func (line 2 in Algorithm 1) because they
are more likely to share the same origin TPL. Note that multiple

Algorithm 1: Function-level Origin TPL Detection

Input: func ; ⊲ Source code of function
Result: origin_tpl

1 Function DetectOriginTPL:
2 similar_funcs← DetectModifiedReuse(func) ; ⊲ Token-based detection
3 candidate_tpls← set()
4 for 𝑓𝑖 in similar_funcs do
5 tpls_𝑓𝑖 ← set of TPLs containing the function 𝑓𝑖

6 source_dirs← ExtractSourcePath(tpls_𝑓𝑖 , 𝑓𝑖) ; ⊲ Across all versions
7 terms_count← ∅
8 for 𝑝𝑖 in source_dirs do
9 terms← PathHierarchyTokenizer(𝑝𝑖)

10 terms_count.update(terms)
11 end
12 terms_sort← Sort(terms_count) ; ⊲ Sort terms by frequency
13 for 𝑡𝑖 in terms_sort do
14 if 𝑡𝑖 contains the name of TPL in tpl_𝑓𝑖 then
15 tpl_path← earliest TPL with the name in 𝑡𝑖
16 candidate_tpls.add(tpl_path) ; ⊲ Based on source dirs
17 break
18 end
19 end
20 tpl_time← TPL with the earliest birth time 𝑡 (𝑡𝑝𝑙, 𝑓𝑖) in tpls_𝑓𝑖
21 candidate_tpls.add(tpl_time) ; ⊲ Based on birth time as Centris
22 end
23 origin_tpl← ResolveMeta(candidate_tpls) ; ⊲ Header, SBOM, License
24 return

existing code clone detectors [13, 24, 56] including Centris adopt
locality-sensitive hashing (LSH) to detect modified code reuse by
measuring the similarity between hashes. However, LSH is argued
to be limited in detecting similar functions only with the provided
cutoff value [32]. For instance, the cutoff for TLSH (one type of
LSH adopted by Centris) is set to be 30 (i.e., two functions are
considered to share the same origin TPL if the cutoff between
two hashes is less than 30) in [44] while the TLSH distance of
the reused function sqlite3SrcListAppend in sqlite.c is 50. Thus,
such a modified reuse cannot be detected, degrading the accuracy
of origin TPL identification. On the other hand, many recent code
clone detectors [15, 66, 77, 84, 85] utilize deep learning models (e.g.,
DPCNN [26] for CodeCMR [77]) with semantic features of code.
However, their overhead of model training and source code seman-
tic feature extraction have been widely recognized to seriously limit
the scalability [15, 22, 33, 34, 65]. Thus, to realize the trade-off be-
tween accuracy and scalability, we adopt the existing token-based
clone detector SourcererCC [57], which is specifically designed for
large code base at the function level. In particular, SourcererCC first
tokenizes the function source code and then exploits an optimized
inverted index to quickly query the cloned functions.

4.1.2 Hierarchical Path Matching. Previous findings indicate that
function birth time can be incorrect when deriving TPL depen-
dencies. To tackle this problem, we utilize the hierarchical path
features (i.e., source directory information) to help identify the ori-
gin TPL since the TPL reuse tends to retain structural similarity (e.g.,
rsync reuses zlib where all the reused functions have the source
directory containing "zlib") on the large-scale TPL dataset [13, 38].

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

Specifically, Algorithm 1 (lines 3-22) presents the workflow of hi-
erarchical path matching. First, we extract the source directories
for all the TPLs containing the target function 𝑓𝑖 (lines 5-6), e.g.,
the source directories for all the functions of file deflate.c in Ta-
ble 4. Next, we adopt the path hierarchy tokenizer [14] to split on
the path separator to generate a directory list, e.g., transforming
path "src/zlib/deflate.c" as the directory list ["src", "zlib", "deflate.c",
"zlib/deflate.c", "src/zlib/deflate.c"]. Meanwhile, we iteratively up-
date terms_count to record the frequency of the directory elements
in the list (lines 7-11). Eventually, we sort the directory elements
in a descending order of their frequency and fuzzily match them
with the names of the TPLs containing 𝑓𝑖 , i.e., 𝑡𝑝𝑙𝑠_𝑓𝑖 . If matched,
the corresponding TPL tpl_path is retained as the potential origin
TPL in candidate_tpls (lines 12-19). For instance, by applying hi-
erarchical path matching to the reused functions in Table 4, “zlib”
and “zlib/deflate.c” are the directory elements with the highest
frequency among the TPLs which both match the actual origin
TPL zlib. Despite structural modification may take place in some
TPLs (e.g., libpng), it usually exerts limited effect on the directory
element frequency in large-scale dataset since the structure tends
to be preserved during TPL reuse [13]. In addition to tpl_path, we
still adopt the TPL with the earliest birth time of 𝑓𝑖 , i.e., tpl_time,
as the potential origin TPL as Centris (lines 20 to 21).

4.1.3 TPL Metadata Resolving. To derive the actual origin TPLs
out of the potential origin TPL collection from Section 4.1.2, we
parse the header files, SBOM files and licenses as follows.
• Header file. We parse the statements of header files included
in TPL source files to derive the origin TPLs, e.g., the statement
<#include "zlib.h"> in rsync indicates that the origin TPL for
the functions in deflate.c should be zlib as mentioned in Sec-
tion 3.4.2.
• SBOM file. We adopt the state-of-the-art SBOM parser from
CCScanner [63] to analyse the SBOMs of the potential origin
TPLs. The derived TPLs which are reused by other TPLs are
identified as the origin TPLs.
• License.We parse the text of license files in the root directory
and determine the origin TPL whose name is most frequently
present in the license files.

4.2 Graph-based Dependency Recall
To realize graph-based dependency recall, we first adopt coarse-
grained detection which initializes the collection of TPL dependen-
cies. Then we propose the centrality-based filter to identify and
remove the potentially invalid TPL dependencies via a centrality
algorithm.

4.2.1 Coarse-grained Detection. Algorithm 2 (lines 2-9) demon-
strates the coarse-grained detection process. First, we follow Centris
to extract all the potential TPL dependencies which are denoted as
(tpl𝑠 , tpl𝑟) pairs. Accordingly, we also collect their corresponding
reused functions (denoted as 𝜔 , lines 3-4). Furthermore, we retain
all the TPL dependencies that satisfy Equation 1 as our initial TPL
dependency collection (line 5):

|𝜔 |
|𝑅 | > 𝛿 · |𝑅 ||𝑅𝜑 |

(1)

Algorithm 2: Graph-based Dependency Recall
Input: TPL dataset tpl_set
Result: tpl_dependencies

1 Function DependencyRecall:
2 tpl_dependencies← ∅
3 for tpl𝑠 , tpl𝑟 ∈ tpl_set × tpl_set do
4 𝜔 ← reused functions from tpl𝑠 to tpl𝑟
5 if |𝜔 | > 0 and CoarseGrainedCheck(tpl𝑠 , tpl𝑟) then
6 𝑅 ← set of functions of tpl𝑟
7 tpl_dependencies.add_edge(tpl𝑠 , tpl𝑟 , weight= |𝜔 |/|𝑅 |)
8 end
9 end

10 CentralityFilter(tpl_dependencies)
11 return
12 Function CentralityFilter(tpl_dependencies):
13 tpl𝜎 _set← ∅
14 centrality_indegree← InDegreeCentrality(tpl_dependencies)
15 centrality_pagerank← PageRank(tpl_dependencies)
16 for tpl in tpl_dependencies.nodes do
17 if Normalize(centrality_pagerank[tpl]) /

Normalize(centrality_indegree[tpl]) > 𝜖 then
18 tpl𝜎 _set.add(tpl)
19 end
20 end
21 for tpl𝑠 , tpl𝑟 in tpl_dependencies.edges do
22 if in-degree(tpl𝑠) > [and tpl𝑟 ∈ tpl𝜎 _set then
23 tpl_dependencies.delete(tpl𝑠 , tpl𝑟)
24 end
25 end
26 return

where 𝛿 refers to a preset hyperparameter, 𝑅𝜑 refers to all the func-
tions where their corresponding origin TPLs are actually tpl𝑟 , and
𝑅 refers to all the collected functions in tpl𝑟 . The rationale behind
Equation 1 is that we tend to include as many dependencies asso-
ciated with the TPLs where a large proportion of their functions
are reused (i.e., |𝑅𝜑 |/|𝑅 |) as possible. To illustrate, since Finding 4
indicates the limitation of applying a fixed reuse ratio threshold,
we determine to approach the optimal reuse ratios of different tpl𝑟 s
dynamically instead of applying a fixed reuse ratio threshold for all
TPLs to include as many TPL dependencies as possible. Accordingly,
our goal is to dynamically derive the optimal reused ratios for differ-
ent TPLs in a coarse-grained manner by reducing 𝛿 · |𝑅 |/|𝑅𝜑 |. Then
we build a directed graph with the retained dependencies (lines 6-7)
as input of centrality-based filter (introduced in Section 4.2.2), where
each edge is assigned with the weight 𝜓𝑠 (𝑟) computed as |𝜔 |/|𝑅 |
to reflect the function reuse ratio between TPLs as introduced in
Section 3.5.

4.2.2 Centrality-based Filter. We propose centrality-based filter to
identify and eliminate the invalid edges/dependencies to the TPL
with high eigenvector centrality and low degree centrality, namely
tpl𝜎 as in Algorithm 2 (lines 12-26). First, we calculate the in-degree
centrality, i.e., the normalized summation of incoming edge weights
for each TPL (line 14). Then we adopt the PageRank [46] algo-
rithm (line 15) to calculate its eigenvector centrality (i.e., PageRank
centrality) because PageRank is advanced in delivering the global
contribution of each node, i.e., TPL in this paper. In particular, the

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

PageRank centrality of 𝑡𝑝𝑙𝑖 is computed as Equation 2.

𝑐𝑖 = 𝛼

𝑛∑︁
𝑗

𝐴𝑖 𝑗

𝑐 𝑗

𝑑+
𝑗

+ 𝛽 (2)

where 𝐴 denotes an adjacency matrix of the weights in TPL depen-
dency with a total of 𝑛 TPLs, 𝑐 denotes the centrality vector, and 𝑑+

𝑗

denotes the out-degree of the 𝑡𝑝𝑙 𝑗 . Note that PageRank algorithm
typically includes two parameters (i.e., damping factor 𝛼 ∈ [0, 1]
and 𝛽), and we strictly follow their default settings, i.e., 𝛼 = 0.85
and 𝛽 = (1 − 𝛼)/𝑛, as suggested by previous studies [12, 39, 75]. To
avoid the costly matrix inversion, we use an iterative computation
method called the power method [19] to approximate the value of 𝑐 .
Based on the derived in-degree centrality and PageRank centrality
for each TPL, we identify it as a tpl𝜎 when the ratio of its PageRank
centrality to its in-degree centrality after normalization exceeds a
preset hyperparameter 𝜖 (lines 16-19). Accordingly, we eliminate
the corresponding TPL dependency (tpl𝑠 , tpl𝑟) where for tpl𝑠 , its
in-degree exceeds a preset hyperparameter [and tpl𝑟 is actually a
tpl𝜎 . Eventually, the remaining TPL dependencies form a DAG as
inspired by Section 3.5.

Figure 5 presents an example where the dependencies (swift-
clang, llvm) and (llvm, swift-clang) are both recalled during coarse-
grained detection, i.e., they both satisfy Equation 1. Nevertheless,
the dependency (llvm, swift-clang) is essentially invalid via manual
calibration. After applying the centrality-based filter for swift-clang,
the ratio of its PageRank centrality (7.37e-03) to its in-degree cen-
trality (3.62e-05) after normalization is much larger than the preset
hyperparameter 𝜖 . We thus identify swift-clang as tpl𝜎 and further
eliminate the invalid dependency (llvm, swift-clang).

llvmswift-clang

pytorch

clamav

physx

[47618, 366628, 504619]

[3748, 4432, 27013]In-degree: 3.62e-05
PageRank: 7.37e-03

In-degree: 9.28e-02
PageRank: 1.48e-02

…[|ω | , |Rφ | , |R |]

Figure 5: An example of centrality-based filter

5 EVALUATION
5.1 Research Questions
We evaluate the performance of TPLite with the following research
questions. Specifically, we adopt the datasets and setups in our
study for evaluation, following prior works [38, 63]:
• RQ3: How do TPLite and its components impact on the accuracy
of the TPL dependencies?
• RQ4:What impact does TPLite exert on the SCA results?

5.2 Evaluation Setup
To evaluate the effectiveness of TPL reuse detection, we addition-
ally include CCScanner [63] which combines Centris and SBOM file
parsers for performance comparison. In particular, CCScanner ana-
lyzes and parses different types of SBOM files to generate the TPL
dependencies and combines them with the dependencies generated

by Centris as the final result. To evaluate the SCA results, in addition
to Centris and CCScanner , we adopt the state-of-the-art binary-level
SCA tools including two popular commercial products—Black Duck
Binary Analysis (BDBA) [11] and Scantist [58] and one academic
binary-to-source SCA tool B2SFinder [78]. Specifically, BDBA is
one of the most reliable and expensive commercial binary-level
SCA tools, which combines static and string-based analysis with
fuzzy matching on the knowledge base. Scantist combines source-
code-level and binary-level SCA into one platform which scans and
remediates open-source security. B2SFinder employs a weighted
feature matching algorithm to facilitate the code features extracted
from both binary and source files.

To perform an ablation study on the components of TPLite, we
also build technique variants ofCentris, i.e.,𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 (Centriswith
function-level origin TPL detection) and 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 (𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑
with coarse-grained detection). The hyperparameter 𝛿 for Equation 1
is set to 0.01. The hyperparameters 𝜖 and [in Section 4.2.2 are set
to 1.5 and 5 respectively1 which achieve the optimal accuracy of
TPL dependency in terms of 𝐹1 score. All the evaluation results are
averaged out of 10 runs to reduce the impact from randomness.

5.3 RQ3: Accuracy of TPL Reuse Detection
Table 5 presents the results of the derived TPL dependencies. We
can observe that overall, TPLite achieves the highest 𝐹1 (73.31%)
based on the 2,150 ground-truth TPL dependencies and significantly
enhances the precision (35.71% to 88.33%), recall (49.44% to 62.65%),
and 𝐹1 (41.47% to 73.31%) compared with Centris. Additionally,
TPLite also improves over CCScanner in terms of precision (36.27%
to 88.33%), recall (54.84% to 62.65%), and 𝐹1 (43.66% to 73.31%).

We further investigate the impact of TPLite components. Specifi-
cally, we observe that 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 reduces 1,522 false positives and
increases the precision from 35.71% to 75.83% comparedwithCentris
which indicates the effectiveness of function-level origin TPL detec-
tion. Moreover, 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 recalls 206 more TPL dependencies
with 122 more true positives compared with 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 by adopt-
ing the additional coarse-grained detection. We further manually
calibrate the 122 true positives and find that all of these dependen-
cies suggest partial reuse between TPLs with reused function ratio
less than 10%. Eventually, we compare 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 and TPLite
to illustrate the effectiveness of centrality-based filter . We can ob-
serve that TPLite eliminates 303 dependencies with centrality-based
filter compared with 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 where 98.35% of them are actu-
ally false positives, increasing the precision from 73.96% to 88.33%.
Moreover, TPLite and 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 have quite close recall (62.65%
vs. 62.88%) despite the deleted dependencies. Such results indicate
each component developed in TPLite can effectively improve over
Centris in terms of TPL reuse detection.
FP Analysis.We investigate all the 178 false positives caused by
TPLite and 156 are caused when both tpl𝑠 and tpl𝑟 depend on a
TPL that is not included in our adopted TPL dataset. For instance,
both xmrig and cpuminer-multi reuse crypto which is not included
in our TPL dataset. As a result, the origin TPL of the functions in
crypto is identified as cpuminer-multi, leading to an invalid TPL

1We evaluate the impact of different hyperparameter setups and present the results
in our GitHub repository [55] due to page limit. Note that applying different hyper-
parameter setups does not incur significant performance variations, indicating the
effectiveness of TPLite.

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

Table 5: Accuracy of TPL dependency

Tool
Metrics of TPL dependency

Total #TP #FP #FN Precision(%) Recall(%) F1(%)

Centris 2,977 1,063 1,914 1,087 35.71 49.44 41.47
CCScanner 32,51 1,179 2,072 971 36.27 54.84 43.66
𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 1,622 1,230 392 920 75.83 57.21 65.22
𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 1,828 1,352 476 798 73.96 62.88 67.97
TPLite 1,525 1,347 178 803 88.33 62.65 73.31

𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 = Centris + function-level origin TPL detection
𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑+𝑐𝑔 = 𝐶𝑒𝑛𝑡𝑟𝑖𝑠𝑜𝑡𝑑 + coarse-grained detection

dependency from xmrig to cpuminer-multi. Typically, such an issue
can be potentially alleviated when we adopt a larger TPL dataset.
FN Analysis. We investigate all the 803 false negatives and 615
are caused due to the black-box reuse [47] which refers to that
the reusing TPL does not contain the external code of the reused
TPL injected in the software artifact during the linking stage. For
instance, yara depends on openssl in the ground-truth data while
yara only includes the headers (e.g. #include <openssl/evp.h>) in-
stead of containing the source code of openssl. In such a black-box
reuse case, the project repository does not contain code of reused
TPLs. Thus, it does not cause feature duplication. Eventually, the
resulting missing TPL dependencies do not affect the SCA results.
In this way, we do not need to handle the black-box reuse following
prior works [47, 48].

5.4 RQ4: Impact on SCA
We further evaluate the impact of TPL reuse detection by TPLite
on the binary-level SCA. In particular, we first adopt the binary
SCA engine BinaryAI [6] (introduced in Section 3.4.1). Then we
remove the redundant features based on the TPL dependencies
derived by Centris, CCScanner , and TPLite respectively and further
construct their own TPL databases for performing SCA tasks. Note
that we consider their performance comparison is fair because
Centris, CCScanner and TPLite are equipped with the same binary
SCA engine and code repository. Therefore, we derive that their
performance gap is caused by the difference in their power to derive
TPL dependencies and the resulting TPL databases.

Table 6: The SCA results

Tool
Metrics of Binary-level SCA

Precision(%) Recall(%) F1(%)

BinaryAI 25.76 56.34 35.35
Centris 56.12 53.28 54.66
CCScanner 60.32 56.19 58.18
TPLite 75.90 64.17 69.54
BDBA 72.46 58.55 64.77
Scantist 68.57 11.24 19.31
B2SFinder 21.08 57.62 30.87

Table 6 presents the results of component identification with
different SCA tools. We can observe that in general, TPLite signifi-
cantly outperforms all the other SCA tools. For instance, TPLite out-
performs Centris (75.90% vs. 56.12% precision and 64.17% vs. 53.28%

(a) TPL reuse detection

(b) SCA (online)

Figure 6: Time cost of Centris, CCScanner, and TPLite

recall) and CCScanner (75.90% vs. 60.32% precision and 64.17% vs.
56.19% recall). Such results indicate the effectiveness of the TPL
reuse detection of TPLite and its impact on SCA. Interestingly,
TPLite dominates the performance of component identification
among the state-of-the-art binary SCA tools. For instance, TPLite
can even sightly outperform the widely-adopted and expensive
BDBA (75.90% vs.72.46% precision, 64.17% vs. 58.55% recall, and
69.54% vs. 64.77% 𝐹1).

We also measure the overhead of the TPL reuse detetcion and
SCA. Figure 6a presents the time cost for deriving the TPL depen-
dency in terms of different sizes of the TPL dataset. We can observe
that in general, it costs TPLitemore time overCentris andCCScanner
in all the dataset sizes. For instance, it takes Centris and TPLite 112
and 135 minutes respectively to derive the TPL dependencies with
the whole 10,241 TPLs. Considering that the TPL reuse detection is
performed offline only once, such additional overhead is tolerable.
Moreover, Figure 6b presents the time cost of the online component
detection. Specifically, we measure the average time cost for detect-
ing the components of our SCA testset with 128 binary files. We
can find that there is no obvious difference of overhead between
Centris, CCScanner , and TPLite.

6 THREATS TO VALIDITY
Threats to internal validity. The threat to internal validity mainly
lies in the implementation of the studied subject. To reduce this
threat, we reuse the source code of Centris to derive the TPL de-
pendencies for the evaluation. Meanwhile, for the implementation
of TPLite, the first two authors carefully review the code to ensure
the correctness and consistency.
Threats to external validity.The threat to external validitymainly
lies in the subjects and ground-truth dataset. To reduce this threat,
we select the start-of-the-art technique Centris for studying its ef-
fectiveness of deriving TPL dependencies. We also compare TPLite
with Centris, CCScanner , and three typical binary-level SCA tools

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

from both industry (BDBA and Scantist) and academia (B2SFinder).
For the SCA dataset, we directly adopt the dataset from the original
Centris paper with sufficient TPLs (10,241) for SCA tasks, similar as
other SCA tools [13, 38, 78]. Considering the lack of publicly avail-
able ground-truth data for both TPL dependency and binary-level
SCA, it also takes the authors excessive manual effort to carefully
construct such two ground-truth datasets which are the largest
datasets in their respective domain to our best knowledge. In par-
ticular, it takes over two months for the first two authors to care-
fully calibrate the ground-truth TPL dependencies. For uncertain or
subjective cases, the first two authors perform more fine-grained
analysis at the code level. If no agreement is reached, such cases are
discarded to keep the consensus of deriving ground-truth data. For
the ground-truth dataset of binary-level SCA, we adopt the largest
number of projects (75) to construct a binary-level SCA dataset.
Moreover, binary-level SCA can be even more labor-intensive com-
pared with source-level SCA due to tremendous effort on binary
analysis. Thus, we consider studying 75 projects for SCA in our
paper to be rather sufficient.
Threats to construct validity. The threat to construct validity
mainly lies in the adopted metrics in our study. To reduce this
threat, we follow prior works [13, 68, 71, 78, 80] to evaluate multiple
widely-used metrics, i.e., TP, FP, FN, Precision, Recall and F1 score.

7 RELATEDWORK
7.1 Software composition analysis
As many binary-analysis-based research works [23, 25, 36, 69, 70],
many SCA techniques identify the third-party components for bi-
nary files (i.e., binary-level SCA) via alleviating feature duplication
caused by internal code clones. Du et al. [13] propose the concept of
internal code clones and design a hierarchical indexing scheme to
identify such cases. OSLDetector [82] constructs an internal clone
forest to reduce the impact of feature duplication between TPLs.
B2SFinder [78] employs a weighted feature-matching algorithm
to enhance the reliability of TPL detection and specific rules to
recognize false positives caused by feature duplication. LibDX [61]
proposes the logic feature block concept representing logical char-
acteristics of code to deal with feature duplication. Centris [68]
eliminates the redundant features with the TPL dependency based
on function birth time and then performs the SCA component iden-
tification in the source code level. Some binary SCA techniques
improve feature extraction to increase the accuracy of component
identification. Xu et al. [74] propose ISRD which uses a multi-level
birthmark model to address feature obfuscation. Tang et al. [62]
adopt function contents as features and convert functions in binary
to vector representationwith neural network embedding.Modx [76]
decomposes the program into fine-grained modules with program
modularization techniques and extracts both semantic and syntac-
tic features. Multiple SCA technologies are specifically designed to
identify components of Android applications.WuKong [64] consists
of two phases—coarse-grained detection by static semantic features
and fine-grained clone detection algorithm. Libradar [40] extends
WuKongwith an improved clustering algorithm, and LibD [35] addi-
tionally adopts the feature hashing algorithm to enhance scalability.
LibScout [10] omits unused code and employs normalized class to
reduce the impact of code obfuscation. Zhang et al. [83] leverage

modularized structures to formulate the SCA as a binary integer
programming model. Zhan et al. [81] compare and study some TPL
detection tools on four criteria and later propose ATVHUNTER [80],
which uses the program control flow graph as a coarse-grained fea-
ture and the opcode as a fine-grained feature for two-stage detection.
In this paper, we propose TPLite to derive the TPL dependencies and
adapt it for binary-level SCA, where TPLite outperforms multiple
existing state-of-the-art binary-level SCA tools [11, 58].

7.2 Code clone detection
Code clone detection evaluates the code similarity between software
projects. SourcererCC [57] is a token-based code clone detector with
different levels of granularity in source code level. Based on Sourcer-
erCC, Lopes et al. [38] build a duplicate code map called DéjàVu
for the code repositories on Github. Semura et al. [59] propose
CCFinderSW to provide a flexible way of supporting multilingual
code detection. Zou et al. [86] utilize graph kernel to improve the
efficiency of code clone detection based on the program depen-
dency graph. Wu et al. [71] improve the scalability of semantic
clone detection by analyzing the centrality of tokens in the control
flow graph. CodeCMR [77] adopts DPCNN and GNN for feature
extraction of source code and binary code respectively to perform
function-level binary—source codematching.Movery [67] identifies
the vulnerable code clones with internal and external modification
of OSS. Centris [68] adopts local sensitive hash for function-level
code clone detection. Gemini [73] applies Structure2vec to generate
function-level embeddings and evaluates the binary code similarity
by measuring the distance between embeddings. Kim et al. [30] for-
mulate binary code clone detection as a graph alignment problem
and propose XBA to utilize graph convolutional networks to learn
the semantic features of binary code. Zeng et al. [79] perform an
extensive study on the existing techniques of code clone detection
based on pre-trained models and find that encoder-based models
can in general outperform encoder-decoder-based models in code
clone detection.

8 CONCLUSION
In this paper, we have extensively investigated the state-of-the-art
SCA technique of the C/C++ ecosystem Centris. Specifically, we
first find that the accuracy of TPL dependencies derived by Centris
and the impact on the SCA component identification may not well
generalize to our evaluation dataset. We further find that inaccurate
function birth time and threshold-based recall can be the key fac-
tors that compromise the effectiveness of Centris. Inspired by our
findings, we propose TPLite for TPL reuse detection and adapt the
derived TPL dependencies to binary-level SCA. The evaluation re-
sults demonstrate that TPLite can significantly improve over Centris
in terms of the accuracy of deriving TPL dependencies with 88.33%
precision and 62.65% recall and the SCA component identification
with 75.90% precision and 64.17% recall.

9 ACKNOWLEDGEMENT
This work is partially supported by the National Natural Science
Foundation of China (Grant No. 61902169), Guangdong Provincial
Key Laboratory (Grant No. 2020B121201001), and Shenzhen Peacock
Plan (Grant No. KQTD2016112514355531).

ISSTA ’23, July 17–21, 2023, Seattle, WA, United States Ling Jiang† , Hengchen Yuan, Qiyi Tang, Sen Nie, Shi Wu, and Yuqun Zhang∗

REFERENCES
[1] 2010. E2fsprogs: Ext2/3/4 Filesystem Utilities. https://e2fsprogs.sourceforge.net.
[2] 2012. The DWARF Debugging Standard. https://dwarfstd.org.
[3] 2022. Apache Maven. https://maven.apache.org.
[4] 2022. GCC, the GNU Compiler Collection. https://gcc.gnu.org.
[5] 2022. The GNU C Library (glibc). https://www.gnu.org/software/libc.
[6] 2023. BinaryAI: binary file security analysis platform. https://binaryai.net.
[7] Filip Agneessens, Stephen P Borgatti, and Martin G Everett. 2017. Geodesic based

centrality: Unifying the local and the global. Social Networks 49 (2017), 12–26.
[8] Sultan S Alqahtani, Ellis E Eghan, and Juergen Rilling. 2017. Recovering seman-

tic traceability links between APIs and security vulnerabilities: An ontological
modeling approach. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 80–91.

[9] Amrita Pathak. 2022. Software Composition Analysis (SCA): Everything You
Need to Know in 2022. https://geekflare.com/software-composition-analysis.

[10] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library
detection in android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 356–367.

[11] Black Duck Hub. 2022. Synopsys Black Duck Binary Analysis.
https://www.synopsys.com/software-integrity/security-testing/software-
composition-analysis/binary-analysis.html.

[12] Ying Ding, Erjia Yan, Arthur Frazho, and James Caverlee. 2009. PageRank for
ranking authors in co-citation networks. Journal of the American Society for
Information Science and Technology 60, 11 (2009), 2229–2243.

[13] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo Kim, and Wenke Lee. 2017. Iden-
tifying open-source license violation and 1-day security risk at large scale. In
Proceedings of the 2017 ACM SIGSAC Conference on computer and communications
security. 2169–2185.

[14] Elasticsearch. 2022. Path hierarchy tokenizer. https://www.elastic.co/guide/en/
elasticsearch/reference/current/analysis-pathhierarchy-tokenizer.html.

[15] Chunrong Fang, Zixi Liu, Yangyang Shi, Jeff Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 516–527.

[16] Muyue Feng, Weixuan Mao, Zimu Yuan, Yang Xiao, Gu Ban, Wei Wang, Shiyang
Wang, Qian Tang, Jiahuan Xu, He Su, et al. 2019. Open-source license violations
of binary software at large scale. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 564–568.

[17] Santo Fortunato, Marián Boguñá, Alessandro Flammini, and Filippo Menczer.
2006. Approximating PageRank from in-degree. In International workshop on
algorithms and models for the web-graph. Springer, 59–71.

[18] Linton C Freeman. 1978. Centrality in social networks conceptual clarification.
Social networks 1, 3 (1978), 215–239.

[19] Gene H Golub and Charles F Van Loan. 2013. Matrix computations. JHU press.
[20] GrammaTech. 2021. Binary Software Composition Analysis, Securing theModern

Software Stack. https://www.grammatech.com/binary-software-composition-
analysis-sca.

[21] Armijn Hemel, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Dolstra. 2011.
Finding software license violations through binary code clone detection. In
Proceedings of the 8th Working Conference on Mining Software Repositories. 63–72.

[22] Wei Hua, Yulei Sui, YaoWan, Guangzhong Liu, and Guandong Xu. 2020. Fcca: Hy-
brid code representation for functional clone detection using attention networks.
IEEE Transactions on Reliability 70, 1 (2020), 304–318.

[23] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. 2020.
Pangolin: Incremental hybrid fuzzing with polyhedral path abstraction. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1613–1627.

[24] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 96–105.

[25] Ling Jiang, Hengchen Yuan, Mingyuan Wu, Lingming Zhang, and Yuqun Zhang.
2023. Evaluating and Improving Hybrid Fuzzing. In Proceedings of the 45th
International Conference on Software Engineering.

[26] Rie Johnson and Tong Zhang. 2017. Deep pyramid convolutional neural networks
for text categorization. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 562–570.

[27] Julie Peterson. 2021. Software Composition Analysis Explained. https://www.
mend.io/resources/blog/software-composition-analysis.

[28] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[29] Dongjin Kim, Seong-je Cho, Sangchul Han, Minkyu Park, and Ilsun You. 2014.
Open Source Software Detection using Function-level Static Software Birthmark.
J. Internet Serv. Inf. Secur. 4, 4 (2014), 25–37.

[30] Geunwoo Kim, Sanghyun Hong, Michael Franz, and Dokyung Song. 2022. Im-
proving cross-platform binary analysis using representation learning via graph
alignment. In Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis. 151–163.

[31] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A
scalable approach for vulnerable code clone discovery. In 2017 IEEE Symposium

on Security and Privacy (SP). IEEE, 595–614.
[32] Amanda Lee and Travis Atkison. 2017. A comparison of fuzzy hashes: evaluation,

guidelines, and future suggestions. In Proceedings of the SouthEast Conference.
18–25.

[33] Maggie Lei, Hao Li, Ji Li, Namrata Aundhkar, and Dae-Kyoo Kim. 2022. Deep
learning application on code clone detection: A review of current knowledge.
Journal of Systems and Software 184 (2022), 111141.

[34] Liuqing Li, He Feng, Wenjie Zhuang, Na Meng, and Barbara Ryder. 2017.
Cclearner: A deep learning-based clone detection approach. In 2017 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
249–260.

[35] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue,
and Wei Huo. 2017. Libd: Scalable and precise third-party library detection in
android markets. In 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 335–346.

[36] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 627–637.

[37] Nelly Litvak, Werner RW Scheinhardt, and Yana Volkovich. 2006. Probabilistic re-
lation between in-degree and pagerank. In International Workshop on Algorithms
and Models for the Web-Graph. Springer, 72–83.

[38] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–28.

[39] Nan Ma, Jiancheng Guan, and Yi Zhao. 2008. Bringing PageRank to the citation
analysis. Information Processing & Management 44, 2 (2008), 800–810.

[40] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. Libradar: fast and
accurate detection of third-party libraries in android apps. In Proceedings of the
38th international conference on software engineering companion. 653–656.

[41] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). IEEE, 7–7.

[42] KawserWazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A
Schneider. 2019. Clcdsa: cross language code clone detection using syntactical
features and api documentation. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1026–1037.

[43] Mark E. J. Newman. 2018. Mathematics of networks. Oxford Scholarship Online
(2018).

[44] Jonathan Oliver, Chun Cheng, and Yanggui Chen. 2013. TLSH–a locality sensitive
hash. In 2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE,
7–13.

[45] OWASP. 2022. OWASP Dependency-Check. https://owasp.org/www-project-
dependency-check.

[46] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-
66. Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/ Previous number =
SIDL-WP-1999-0120.

[47] Thiagarajan Ravichandran and Marcus A Rothenberger. 2003. Software reuse
strategies and component markets. Commun. ACM 46, 8 (2003), 109–114.

[48] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of
Orphan Vulnerabilities from Code Reuse in Open Source Software. (2022).

[49] Github Repository. 2011. zlib-v0.8 file of deflation algorithm. https://github.com/
madler/zlib/blob/v0.8/deflate.c.

[50] Github Repository. 2015. Independent JPEG Group’s JPEG software. https:
//github.com/LuaDist/libjpeg.git.

[51] Github Repository. 2022. ClickHouse: open-source column-oriented database
management system. https://github.com/ClickHouse/ClickHouse.

[52] Github Repository. 2022. SQLiteC++ file of sqlite3. https://github.com/
SRombauts/SQLiteCpp/blob/master/sqlite3/sqlite3.c.

[53] Github Repository. 2022. SQLiteC++ with native C APIs of SQLite. https://github.
com/SRombauts/SQLiteCpp/tree/master/sqlite3.

[54] Github Repository. 2022. ZLIB DATA COMPRESSION LIBRARY. https://github.
com/madler/zlib.

[55] Github Repository. 2023. TPLite: TPL dependency scanner with origin detection
and centrality analysis. https://github.com/Tricker-z/TPLite.

[56] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and
Zhendong Su. 2009. Detecting code clones in binary executables. In Proceedings of
the eighteenth international symposium on Software testing and analysis. 117–128.

[57] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. Sourcerercc: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. 1157–1168.

[58] Scantist. 2022. Scantist, an open source management platform. https://scantist.io.
[59] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue. 2017. CCFind-

erSW: Clone detection tool with flexible multilingual tokenization. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 654–659.

[60] Manuel Sojer and Joachim Henkel. 2010. Code reuse in open source software
development: Quantitative evidence, drivers, and impediments. Journal of the
Association for Information Systems 11, 12 (2010), 868–901.

https://e2fsprogs.sourceforge.net
https://dwarfstd.org
https://maven.apache.org
https://gcc.gnu.org
https://www.gnu.org/software/libc
https://binaryai.net
https://geekflare.com/software-composition-analysis
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/binary-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis/binary-analysis.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pathhierarchy-tokenizer.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-pathhierarchy-tokenizer.html
https://www.grammatech.com/binary-software-composition-analysis-sca
https://www.grammatech.com/binary-software-composition-analysis-sca
https://www.mend.io/resources/blog/software-composition-analysis
https://www.mend.io/resources/blog/software-composition-analysis
https://owasp.org/www-project-dependency-check
https://owasp.org/www-project-dependency-check
http://ilpubs.stanford.edu:8090/422/
https://github.com/madler/zlib/blob/v0.8/deflate.c
https://github.com/madler/zlib/blob/v0.8/deflate.c
https://github.com/LuaDist/libjpeg.git
https://github.com/LuaDist/libjpeg.git
https://github.com/ClickHouse/ClickHouse
https://github.com/SRombauts/SQLiteCpp/blob/master/sqlite3/sqlite3.c
https://github.com/SRombauts/SQLiteCpp/blob/master/sqlite3/sqlite3.c
https://github.com/SRombauts/SQLiteCpp/tree/master/sqlite3
https://github.com/SRombauts/SQLiteCpp/tree/master/sqlite3
https://github.com/madler/zlib
https://github.com/madler/zlib
https://github.com/Tricker-z/TPLite
https://scantist.io

Third-Party Library Dependency for Large-Scale SCA in the C/C++ Ecosystem: How Far Are We? ISSTA ’23, July 17–21, 2023, Seattle, WA, United States

[61] Wei Tang, Ping Luo, Jialiang Fu, and Dan Zhang. 2020. Libdx: A cross-platform
and accurate system to detect third-party libraries in binary code. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 104–115.

[62] Wei Tang, Yanlin Wang, Hongyu Zhang, Shi Han, Ping Luo, and Dongmei Zhang.
2022. LibDB: An Effective and Efficient Framework for Detecting Third-Party
Libraries in Binaries. arXiv preprint arXiv:2204.10232 (2022).

[63] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu, Shouguo Yang, Yi Li, Ping Luo,
and Yang Liu. 2022. Towards Understanding Third-party Library Dependency
in C/C++ Ecosystem. In 37th IEEE/ACM International Conference on Automated
Software Engineering. 1–12.

[64] HaoyuWang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015. Wukong: A scalable
and accurate two-phase approach to android app clone detection. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. 71–82.

[65] Song Wang, Taiyue Liu, Jaechang Nam, and Lin Tan. 2018. Deep semantic feature
learning for software defect prediction. IEEE Transactions on Software Engineering
46, 12 (2018), 1267–1293.

[66] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code.. In IJCAI. 3034–3040.

[67] Seunghoon Woo, Hyunji Hong, Eunjin Choi, and Heejo Lee. 2022. {MOVERY}:
A Precise Approach for Modified Vulnerable Code Clone Discovery from Modi-
fied {Open-Source} Software Components. In 31st USENIX Security Symposium
(USENIX Security 22). 3037–3053.

[68] Seunghoon Woo, Sunghan Park, Seulbae Kim, Heejo Lee, and Hakjoo Oh. 2021.
CENTRIS: A Precise and Scalable Approach for IdentifyingModified Open-Source
Software Reuse. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 860–872.

[69] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. 2022. One fuzzing strategy to rule them all. In Pro-
ceedings of the 44th International Conference on Software Engineering. 1634–1645.

[70] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin
Ma, Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. 2022. Evaluating and
improving neural program-smoothing-based fuzzing. In Proceedings of the 44th
International Conference on Software Engineering. 847–858.

[71] Yueming Wu, Deqing Zou, Shihan Dou, Siru Yang, Wei Yang, Feng Cheng, Hong
Liang, and Hai Jin. 2020. SCDetector: software functional clone detection based
on semantic tokens analysis. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 821–833.

[72] Stefan Wuchty and Peter F Stadler. 2003. Centers of complex networks. Journal
of theoretical biology 223, 1 (2003), 45–53.

[73] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security. 363–376.

[74] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting Liu. 2021.
Interpretation-enabled software reuse detection based on a multi-level birthmark
model. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 873–884.

[75] Erjia Yan and Ying Ding. 2011. Discovering author impact: A PageRank perspec-
tive. Information processing & management 47, 1 (2011), 125–134.

[76] Can Yang, Zhengzi Xu, Hongxu Chen, Yang Liu, Xiaorui Gong, and Baoxu Liu.
2022. ModX: binary level partially imported third-party library detection via
program modularization and semantic matching. In Proceedings of the 44th Inter-
national Conference on Software Engineering. 1393–1405.

[77] Zeping Yu, Wenxin Zheng, Jiaqi Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2020.
Codecmr: Cross-modal retrieval for function-level binary source code matching.
Advances in Neural Information Processing Systems 33 (2020), 3872–3883.

[78] Zimu Yuan, Muyue Feng, Feng Li, Gu Ban, Yang Xiao, Shiyang Wang, Qian Tang,
He Su, Chendong Yu, Jiahuan Xu, et al. 2019. B2sfinder: detecting open-source
software reuse in cots software. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 1038–1049.

[79] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 39–51.

[80] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and
Yang Liu. 2021. Atvhunter: Reliable version detection of third-party libraries
for vulnerability identification in android applications. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1695–1707.

[81] Xian Zhan, Lingling Fan, Tianming Liu, Sen Chen, Li Li, Haoyu Wang, Yifei
Xu, Xiapu Luo, and Yang Liu. 2020. Automated third-party library detection for
android applications: Are we there yet?. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 919–930.

[82] Dan Zhang, Ping Luo, Wei Tang, and Min Zhou. 2020. OSLDetector: identifying
open-source libraries through binary analysis. In 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 1312–1315.

[83] Jiexin Zhang, Alastair R Beresford, and Stephan A Kollmann. 2019. Libid: reliable
identification of obfuscated third-party android libraries. In Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis.
55–65.

[84] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783–794.

[85] Gang Zhao and Jeff Huang. 2018. Deepsim: deep learning code functional simi-
larity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
141–151.

[86] Yue Zou, Bihuan Ban, Yinxing Xue, and Yun Xu. 2020. CCGraph: a PDG-based
code clone detector with approximate graph matching. In 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 931–942.

	Abstract
	1 Introduction
	2 Background
	2.1 Software Composition Analysis
	2.2 State-of-the-Art Centris

	3 Study on Centris
	3.1 Dataset
	3.2 Experimental Setup
	3.3 Research Questions
	3.4 Results and Analysis
	3.5 Discussion

	4 Approach: TPLite
	4.1 Function-level Origin TPL Detection
	4.2 Graph-based Dependency Recall

	5 Evaluation
	5.1 Research Questions
	5.2 Evaluation Setup
	5.3 RQ3: Accuracy of TPL Reuse Detection
	5.4 RQ4: Impact on SCA

	6 Threats to Validity
	7 Related Work
	7.1 Software composition analysis
	7.2 Code clone detection

	8 Conclusion
	9 Acknowledgement
	References

